Смекни!
smekni.com

Биотехнология на страже урожая (стр. 8 из 8)

На кафедре сельскохозяйственной биотехнологии Московской сель­скохозяйственной академии им. К.А. Тимирязева проводились исследо­вания по получению солеустойчивых растений на примере яровых твер­дых и мягких пшениц. Первичным эксплантом служили как изолирован­ные незрелые зародыши, так и гаплоиды. Клеточную селекцию проводили на каллусной ткани, культивируемой на питательной среде, содержащей 0,3 %NaCI или Na2SO4 в течение 5—6 пассажей. В результа­те исследований были получены устойчивые клеточные линии, а также растения-регенеранты. Тестирование на солеустойчивость первого се­менного поколения растении-регенерантов методом регистрации замед­ленной флоуроесценции показало, что фотосинтетический аппарат неко­торых растении-регенерантов по устойчивости к засолению превосходит исходный сорт (Никифорова И.Д., 1993, 1994).

Солевыносливость растений удается также повысить в результате се­лекции к одному фактору засоления осмотическому стрессу. Например, клетки томата, адаптированные к водному стрессу, индуцированному полиэтиленгликолем, обладали повышенной устойчивостью к NaС1. Повы­шенная толерантность к соли обнаружена у клеточных линий моркови, отобранных на среде, содержащей в качестве осмотика маннитол в высо­кой концентрации (99—870 мМ). Из этих результатов следует, что адап­тация клеток к осмотическому стрессу применима для отбора солевынос­ливых вариантов, а исследования подобного рода представляют интерес для изучения как во взаимодействии, так и независимо друг от друга.

Металлы. Присутствие в почве в большом количестве ионов ме­таллов, токсически влияющих на растения, или недостаток ионов, ис­пользуемых растениями в качестве питательных веществ, могут быть причиной ионного (минерального) стресса у растений. Особое внимание ученых привлекает изучение стрессов, обусловленных наличием в почве ионов тяжелых металлов, многие из которых токсически влияют как на растительные, так и на животные организмы. Стрессовое состояние у рас­тений может быть индуцировано ионами таких тяжелых металлов, как цинк, кадмий, медь, ртуть; они также довольно часто встречаются и в почвах, механизмы устойчивости к токсическим ионам могут исключать уменьшение проницаемости плазмалеммы, детоксикацию ионов в ре­зультате связывания с органическими веществами, компартментализацию в вакуолях, а также изменения структуры ферментов, которые явля­ются их мишенями.

Работы по клеточной селекции растений на устойчивость к ионным стрессам начаты недавно, но уже имеют положительный результат. Во всех экспериментах используется метод прямой селекции, при котором в качестве селективного агента применяли токсические концентрации со­лей. Однако создание стрессовых селективных условий invitro, идентич­ных таковым в природе, крайне затруднительно. В природных условиях помимо токсического действия ионов накладываются другие факторы, в частности наличие различных веществ, кислотность почвы и т. д. Для се­лекции на клеточном уровне используют питательные среды, которые хотя не полностью соответствовали естественным стрессовым условиям, все же обеспечивали экспрессию признака устойчивости и давали воз­можность отбирать нужные варианты.

Путем прямой селекции invitro отобраны клеточные линии петунии, устойчивые к ртути, сорго—к алюминию, моркови — к алюминию и марганцу одновременно; суспензионные клеточные культуры дурма­на — к кадмию. На кафедре сельскохозяйственной биотехнологии МСХА также проводились работы по получению клеточных линий и рас­тений-регенерантов льна-долгунца, устойчивых к соли нитрата кадмия и изучалось действие этой соли на интактные растения. Экспериментально показано, что присутствие ионов кадмия в почве приводит к торможению роста стеблевой и корневой частей растения, к сокращению на 7—9 дней онтогенетических фаз развития, следующих за фазой «елочки» по сравне­нию с контролем, культурные виды накапливают ионы кадмия в вегета­тивной массе, в то время как дикие — нет. Мезо- и ультраструктурный анализ стеблей льна-долгунца показал, что присутствие кадмия в суб­страте приводило к уменьшению количества клеток элементарных воло­конец в пучке, к некомпактному расположению клеток элементарных во­локонец в лубяных пучках, а также к формированию клеток элементар­ных волоконец неодинаковых размеров в пределах одного пучка и к раз­личным срокам формирования вторичной клеточной стенки. В результате клеточной селекции были получены растения-регенеранты, обладающие устойчивостью к соли кадмия (Гончарук Е.А., 2000).

Экстремальные температуры. Причиной стрессово­го фактора у растений могут быть относительно высокие или низкие тем­пературы. Работ по клеточной селекции на устойчивость к этим стрессам немного. В изученной нами литературе сведений о клеточной селекции к тепловому шоку не обнаружено, хотя белки теплового шока являются предметом пристального изучения биологов различного профиля. Что касается работ по клеточной селекции к низкотемпературным факторам, то они имеют место.

Холодовой стресс у растений может быть вызван температурами большого диапазона: от 10—15° до 0°С. Такому стрессу наиболее подвер­жены растения тропических и субтропических зон. Стойкость растений к охлаждению обусловлена способностью липидов мембран оставаться в жидком состоянии благодаря наличию большой пропорции ненасыщен­ных жирных кислот и/или повышенного содержания стеролов. Повреж­дения, вызванные промораживанием растений (температура ниже 0°С)связаны прежде всего с формированием внеклеточного льда. При этом отток воды во внеклеточное пространство приводит к вторичному эффек­ту, вызванному водным стрессом. Нарушения, вызываемые отрицатель­ными температурами, могут быть предотвращены аккумуляцией антифризных веществ, уменьшением количества несвязанной воды при обез­воживании и увеличением способности переохлаждаться. Большинство авторов отмечают, что у растений происходят глубокие превращения за­пасных питательных веществ, в частности, у морозоустойчивых древес­ных растений накопление большого количества жиров, а у менее устой­чивых — Сахаров.

Первые эксперименты, в которых описана возможность использова­ния культивируемых растительных клеток для отбора выносливых к низ­ким температурам клеточных линий, опубликованы в 1976 г. (Dix, Street, 1976). Работы проводились на суспензионных культурах табака и перца, которые после высева на агаризованные среды подвергались в течение 21 дня соответственно температурам — 3° и 4°С. Среди отобранных кло­нов обнаружены линии, стабильно сохраняющие повышенную холодо­устойчивость.

Основываясь на имеющихся в этой области исследований данных, од­нозначный ответ о применимости прямой селекции invitro растений, вы­носливых к низкой температуре, давать пока рано. Несомненно, однако, что индукция invitro генетического разнообразия найдет применение для отбора более выносливых вариантов.


Список литературы

1. Биотехнология – агропромышленному комплексу // В.И.Артамонов. – М.:Наука, 1989г. – 160 с.

2. Сельскохозяйственная биотехнология: Учеб/В.С.Шевелуха, Калашникова Е.А. и др.; Под ред. В.С.Шевелухи – 2-е изд. перераб. и доп. – М.: Высш. шк., 2003. -496.