Ю.Н. Самарин, кандидат технических наук, Московский государственный университет печати
Идея фотонабора родилась в России около ста лет тому назад. В 1950–1980 гг. фотонаборные автоматы электронно-механического типа стали широко применяться для получения фотографического изображения строк и гранок текста. В этих автоматах хранение знаков шрифта осуществляется на специальных изделиях – шрифтоносителях, на поверхность которых нанесено изображение целого комплекта знаков. Создание электронно-механических фотонаборных автоматов и комплектующего оборудования привело к широкому их внедрению, так как решало ряд технологических проблем и повышало эффективность фотонаборных процессов.
С середины 1970-х гг. основным направлением развития новой техники для наборных и формных процессов являлось последовательное сближение и объединение функций по обработке текста и иллюстраций благодаря цифровому способу представления их изображения в системах допечатной подготовки изданий. Отечественные серийные системы успешно эксплуатировались после 1987 г. в газетных издательствах “Лев Толстой” (Тула), “Пресса Украины” (Киев). Кодирование, правка и верстка текста выполнялись на специально созданных фотонаборных и фотовыводных аппаратах, разработкой которых занимались АО “Ленполиграфмаш”, НПО “Полиграфмаш”, НИИ периферийного оборудования (Киев), Институт кибернетики АН Украины, ВНИИполиграфии и ряд других организаций.
Появление и быстрое распространение практически во всем мире относительно дешевых персональных компьютеров IBM PC и Macintosh в начале 1980-х гг. привели к резкому ускорению развития автоматизированных систем переработки текста и иллюстраций. Результатом стали унификация и революционное преобразование методов допечатной подготовки – т.е. изготовления печатных форм – изданий. Это сделало ненужными специализированные наборно-корректурные, верстальные аппараты, видеотерминалы для проведения корректуры изображений. Вычислительные возможности, огромная оперативная и долговременная память персональных компьютеров позволили с высокой скоростью осуществлять обработку не только черно-белых, но и цветных изображений. Изготовление фотоформ цветоделенных высоколинеатурных изображений потребовало создания фотовыводных устройств, которые обладали существенно большим разрешением, чем первые лазерные фотонаборные машины. Это привело в свою очередь к необходимости создания специализированных растровых процессоров (РИП), быстро преобразующих цифровую информацию об изображении в растровую форму для вывода на фотоформу или на принтере. Фирма Apple – разработчик компьютеров Macintosh – выбрала для этого разработанный фирмой Adobe Systems специальный язык описания полосы PostScript, который к настоящему времени приобрел статус стандарта.
Для организации автоматизированной переработки текстовой и изобразительной информации служат, как правило, несколько ЭВМ, объединенных в линию с допечатным оборудованием или работающих с ним через промежуточный носитель информации. В основе построения систем допечатной подготовки изданий лежит концепция системного подхода к организации допечатного процесса, при котором все технологические операции, связанные с вводом, обработкой и выводом изображений, согласованы друг с другом, используют одинаковые форматы данных, единые параметры, принципы связи и управления различными этапами единого процесса. При этом все технические и программные параметры аппаратного и программного обеспечения находятся в жесткой взаимосвязи, что позволяет существенно оптимизировать процесс допечатной подготовки и добиваться максимально возможной производительности всей системы и ее надежности [1].
Популярности именно такого способа допечатной подготовки в немалой степени способствовали созданные на базе языка PostScript и внедренные в конце 1990-х гг. автоматизированные системы “компьютер–печатная форма”, в которых изображение полосы непосредственно из компьютера выводится на печатную форму. При этом полностью отсутствуют какие-либо промежуточные вещественные полуфабрикаты: фотоформы, репродуцируемые оригинал-макеты, монтажи и т. д.
Следует отметить, что технология “компьютер–печатная форма” (Computer-to-Plate) известна полиграфистам более 30 лет. Однако только в последние годы созданы реальные условия для ее внедрения: появились достаточно тиражестойкие формные материалы, пригодные для поэлементной записи изображений, эффективное оборудование, осуществляющее прямое экспонирование формного материала с высоким разрешением и скоростью, надежные программные средства допечатной подготовки изданий. Но по своей сути технология CtP представляет собой управляемый компьютером процесс изготовления печатной формы методом прямой записи изображения на формный материал. Этот процесс, который реализуется с помощью однолучевой или многолучевой записи, более точен, так как каждая пластина является первой оригинальной копией, изготовленной с одних и тех же цифровых данных. В результате достигаются большая резкость и более точное воспроизведение всего диапазона тональности исходного изображения, одновременно со значительным ускорением подготовительных и приладочных работ на печатной машине [2].
Созданию этих современных и совершенных технологий предшествовала долгая кропотливая работа, в процессе которой родились многие оригинальные и теперь уже забытые идеи. Их расцвет в нашей стране пришелся на 70-е гг., о чем сейчас нередко не помнят. Вообще же принципиальная возможность применения фотонабора для получения диапозитивов в виде текстовых фотоформ была известна еще в конце XIX в. К этому же времени относятся первые заявки на конструкции фотонаборных машин. Приоритет в изобретении и практическом изготовлении фотонаборной машины принадлежит русскому изобретателю В.А. Гассиеву. В 1894 г. он сконструировал первую в мире модель фотонаборной машины. В 1900 г. Комитет по техническим делам выдал ему официальную привилегию, подтвердив тем самым оригинальность его изобретения [3].
Первыми работоспособными и нашедшими применение фотонаборными машинами были оптико-механические, обеспечивающие фотонабор отдельных строк и гранок текста. Все основные технологические операции в них выполняются механическими системами, а для представления знаков шрифта используются фотоматрицы. Каждая фотоматрица содержит негативное изображение одного знака. Вывод знака на оптическую ось осуществляется механическим способом, а масштабирование знака при его фотографировании – за счет изменения коэффициента увеличения оптической системы. В оптико-механических фотонаборных машинах создание изображения строк текста происходит путем побуквенного фотографирования изображения знаков фотоматриц, которые в момент фотографирования неподвижны.
Выводом шрифтовых знаков на оптическую ось, т.е. установкой знаков в положение фотографирования, управляет оператор с клавиатуры. Формирование строки при этом происходит в полуавтоматическом режиме: оператор в конце набора строки текста принимает решение об ее окончании и дает соответствующую команду, а расчет выключки (доведение строки до заданного формата) по этой команде выполняется механической системой.
В первой отечественной оптико-механической фотонаборной машине НФС, разработанной коллективом сотрудников НИИ Полиграфмаша (1952–1954 гг.), текст построчно проецировался на фотоматериал. Машина работала следующим образом. В результате работы наборщика на клавиатуре формировалась строка фотоматриц, которая устанавливалась перед щелью фотоаппарата и освещалась через эту щель ртутно-кварцевой лампой. При срабатывании затвора строка экспонировалась на пленке. Матричная строка после фотографирования автоматически разбиралась.
Продукция такой машины – текстовый диапозитив, а ее производительность – 6–8 строк в минуту. Кегль (размер) шрифта – от 6 до 14 пунктов (1 пункт = 0,376 мм), причем кегль шрифта на фотоматрицах – 10 и 12 пунктов.
Экспериментальный образец машины НФС был изготовлен и прошел производственные испытания в 1954 г. Однако из-за ограниченных технологических возможностей машины и сложности изготовления фотоматриц серийный выпуск таких машин осуществлен не был [4].
В 1950–1980 гг. фотонаборные автоматы электронно-механического типа нашли широкое применение для получения фотографического изображения строк и гранок текста, а впоследствии, при совместной их работе с ЭВМ, – сверстанных книжно-журнальных полос. В этих автоматах хранение знаков шрифта осуществлялось на специальных изделиях – шрифтоносителях, на поверхность которых наносилось изображение целого комплекта знаков [5].
Такие шрифтоносители, в отличие от фотоматриц, по существу представляющие собой индивидуальные шрифтоносители, являются групповыми и содержат, например, знаки русского и латинского алфавитов, цифры, знаки препинания, специальные символы или другие варианты комплекта знаков. Подборка шрифтоносителей различных гарнитур и начертаний шрифта составляла шрифтовое обеспечение фотонаборного автомата и поставлялась как совместно с ним, так и отдельно.
Фотонаборные автоматы работали от специальной, предварительно подготовленной программы управления. Эта программа записывалась на носитель информации (перфоленту, магнитную ленту, дискету) и вводилась с него в фотонаборный автомат. Управление фотонаборным автоматом осуществлялось также непосредственно от ЭВМ при соединении их в линию.
Программу управления подготавливали с помощью наборно-программирующего и корректурного аппаратов или на наборно-корректурном аппарате, оснащенном микропроцессором и видеотерминальным устройством. Программа могла быть как полнокодовой, т.е. содержащей коды знаков текста, разбитого на строки заданного формата, так и неполнокодовой, в которой содержались коды знаков целого абзаца текста без разбивки на строки. В последнем случае формирование строк осуществлял не оператор, готовящий программу управления, а сам фотонаборный автомат, снабженный специальным электронным устройством или микропроцессором.