Работы в области подводной конструктивной защиты (ПКЗ) проводились в 50-е годы применительно к тяжелым крейсерам проектов 69 и 82 и в 70-80-е годы - к авианесущим кораблям проектов 1153 и 11435 под руководством Ф.С.Шлемова.
В ходе этих работ исследовалось влияние отдельных элементов ПКЗ на ее сопротивляемость действию контактного подводного взрыва, а также проводилась опытная проверка различных вариантов ПКЗ на масштабных и натурных отсеках. В результате для строившегося проекта 82 были рекомендованы системы - бортовая ПКЗ с цилиндрической основной защитной переборкой и днищевая ПКЗ в виде тройного дна, сопротивляемость которых подтверждена масштабными испытаниями и соответствовала ТТЗ. Однако из-за прекращения строительства корабля эти системы ПКЗ не были реализованы.
В 60-е годы были рассмотрены принципы надводной конструктивной защиты кораблей применительно к воздействию крылатых ракет. Эти принципы сформулированы 1-м ЦНИИМО в виде общих требований ВМФ к противоракетной конструктивной защите. Выполнен большой комплекс теоретических и экспериментальных работ в обеспечение проектирования и строительства корабля проекта 1144 (главный конструктор В.Е.Юхнин).
В результате разработаны рекомендации по проектированию и расчету конструктивной защиты надводных кораблей от ракет с фугасно-осколочными БЧ, а также создан альбом типовых конструкций защиты. Большое внимание уделялось отработке композитных конструкций, применение которых, как показали испытания, приводит к уменьшению массы конструкции защиты. Наибольший вклад при этом внесли Ю.А.Артамонов, В.Г.Бессонов, В.Е.Никитин, Г.Л.Никифоров.
В дальнейшем работы выполнялись в рамках комплексной НИР (КНИР) “Бастион” (научные руководители В.В.Дмитриев, Н.С.Каратаев). Были исследованы вопросы моделирования взрывных и ударных процессов, сопровождающих воздействие ракет на конструкции защиты, проведен большой объем испытаний масштабных и натурных конструкций защиты на подрывных площадках, на судне-мишени и на разгонных треках. Для изучения процессов высокоскоростного взаимодействия осколков ракет с конструкциями защиты в ЦНИИ им.академикаА.Н.Крылова создан стенд с легкогазовой метательной установкой, на котором отрабатывались фрагменты защиты конструкций из различных материалов.
В рамках КНИР “Бастион” проводились также работы, направленные на создание противоосколочной и противопульной защиты кораблей с динамическими принципами поддержания. ВМФ были разработаны общие требования к уровню их защиты, которые конкретизировались в ТТЗ на проектирование отдельных кораблей, изысканы специальные материалы для защитных конструкций, обладающие повышенной осколочной и пулевой стойкостью по сравнению с традиционными корпусными материалами. Созданы схемы конструктивной защиты, обеспечивающие требуемый уровень стойкости и живучести защиты при характерном для кораблей этого класса жестком ограничении по нагрузке масс. В ЦНИИ им.академикаА.Н.Крылова эти работы выполнялись под руководством А.В.Агафонова, в ЦНИИТС - Б.И.Боброва, в ЦМКБ “Алмаз” - В.А.Булкина. Их выполнение позволило решить задачу обеспечения уровня защиты КДПП второго поколения в соответствии с требованиями ВМФ.
Пожаробезопасность
Актуальность обеспечения пожаробезопасности диктовалась все возрастающим количеством пожаров на кораблях ВМФ. Так, с 1952г. по 1989г. имело место 94 случая пожаров и возгораний на дизельных и около 175 случаев на АПЛ. На НК в этот период произошло около 480 пожаров. Оснащение кораблей ракетным оружием и появление атомной энергетики резко увеличивали степень их пожароопасности.
Ряд крупных аварий, связанных с пожарами и взрывами в машинных выгородках ПЛ проекта 615А, потребовал разработки и установки на ПЛ систем пенного тушения. Первые атомные подводные лодки оснащаются атомной системой пожаротушения реакторных отсеков.
Серьезное внимание обращено на обеспечение взрывопожароопасности ракетных погребов кораблей. С этой целью, например, на ракетном корабле проекта 56М предусматривалось оборудование погреба ингибиторной системой и системой автоматического орошения. Для снятия избыточного давления при аварии корпусные конструкции хранилищ оснащались “слабыми звеньями” в виде выхлопных крышек. Комплекс перечисленных систем срабатывал автоматически при повышениях температуры и давления в ракетном погребе, возникающих вследствие аварийного и боевого повреждения ракет.
На кораблях снижается доля горючих и трудногорючих материалов от общего количества неметаллических материалов, применяемых в кораблестроении. На подводных лодках горючая гидравлическая жидкость заменена на негорючую.
Разработаны и поставлены на снабжение надводных кораблей и подводных лодок индивидуальные переносные дыхательные аппараты (позже ПЛ снабжаются стационарными дыхательными системами). Это привело к увеличению времени защиты органов дыхания личного состава на кораблях.
Несмотря на возросшие возможности по обеспечению положительного исхода аварий при пожаре, ряд факторов требовал ужесточения условий пожаробезопасности. На кораблях возрастало в 2-3 раза количество взрывчатых веществ, в 8 раз выросла масса ракетных топлив, в 2-3 раза увеличился объем хранилищ боезапаса, который стал составлять 9-12% от всего корабельного объема, с учетом же помещений для летательных аппаратов он стал занимать от 15 до 31% объемов корабля, а по протяженности - от 40 до 70% всей длины корпуса корабля. При этом погреба из-за больших габаритов ракет не только не умещались ниже ватерлинии, что было непременным условием расположения артиллерийских погребов, но и выходили на верхнюю палубу, а это приводило к вероятности непосредственного воздействия средств поражения на боезапас.
Повышению опасности возникновения пожаров способствовало многократное увеличение энерговооруженности кораблей за счет использования новых видов энергетических установок, которые работают в условиях высоких температур, давлений, напряжений рабочих сред. Рост суммарной мощности электротехнических систем кораблей привел к усложнению схем распределения электроэнергии. Это десятки распределительных щитов, сотни электродвигателей, тысячи километров кабелей (силового и управления).
Объемные пожары, которые имели место на АПЛ первого поколения, потребовали разработки системы объемного пожаротушения. Огневые натурные испытания опытного образца системы объемного химического пожаротушения с огнегасителем (халдон 114В2) были проведены в 1969г. За короткий срок все находившиеся в строю ПЛ были оснащены этими системами.
Результаты данной работы, проведенной под руководством 1-гоЦНИИМО (И.И.Богдашев) при головном исполнителе СПМБ “Малахит” (В.А.Петлин, Г.Б.Шапот, Л.А.Тавдиашвили, И.Н.Павлова), позволили значительно усилить противопожарную защиту кораблей, 60% пожаров на ПЛ было потушено именно системой объемного химического пожаротушения. В 1968-1971 гг. системы пожаротушения были модернизированы.
На НК были установлены: системы автоматической индикации пожара в хранилищах боезапаса, модернизированная арматура на системах орошения, новые типы электрических пожарных водяных насосов, системы объемного химического пожаротушения, а также пенные системы. На ПЛ модернизировалась система пенного тушения и устанавливалась система объемного химического пожаротушения.
Большой объем исследований и экспериментальных работ по проверке достаточности и эффективности систем противопожарной и противовзрывной защиты хранилищ твердотопливных зенитных ракет был проведен 1-м ЦНИИМО. Огневые натурные испытания выполнены на натурном отсеке корабля проекта 61 межведомственной комиссией (председатель В.Н.Буров).
К сожалению, до 1976г. противопожарная и противовзрывная защита хранилищ создавалась без учета особенностей каждого комплекса оружия. На фактическую эффективность системы и средства в натурных условиях не проверялись. Гибель ВПК “Отважный” проекта 61 в 1974г. заставила резко ускорить работы в этом направлении.
На экспериментальной базе силами ряда организаций ВМФ и промышленности были проверены на фактическую эффективность в условиях огневых натурных испытаний все зенитные ракетные комплексы надводных кораблей постройки 70-80-х годов. Проведено 112 огневых опытов в условиях, практически полностью соответствовавших условиям возможных аварий оружия, как при несанкционированном запуске, так и при боевом осколочном поражении. Результаты проведенных исследований позволили выяснить основные опасные факторы аварий в хранилищах боезапаса, разработать и внедрить комплекс мероприятий по совершенствованию существенных систем и средств противопожарной и противовзрывной защиты корабельных хранилищ оружия. Эффективность проведенных работ была подтверждена в 1984г., когда на одном из кораблей Черноморского флота произошла авария, практически идентичная аварии на БПК “Отважный”. Все модернизированные системы и средства хранилища ЗРК “Волна-М” сработали по своему прямому назначению. Носовое хранилище ракетного боезапаса и корабль в целом повреждений не получили.
Впервые в отечественном кораблестроении были разработаны требования к конструктивной противопожарной защите для надводных кораблей. Они внедрены на кораблях проектов 1155.1, 1143, 10540, 11660 и др. Одним из основных путей совершенствования противопожарной защиты признана приоритетность конструктивной противопожарной защиты перед активной противопожарной защитой (АПЗ). Первая определяет максимальный размер возможного пожара, которому должен соответствовать минимально необходимый уровень АПЗ.