Смекни!
smekni.com

Океан в капле воды, или Вся техника в одной стекляшке (стр. 6 из 9)

Третий путь, по которому может пойти техника – гибридизация приборов и решений. Скрестить электровакуумный прибор с полупроводниковым можно, в принципе, несколькими способами, и некоторые из них были реализованы. Можно создать электронный пучок в вакууме «электровакуумными» методами, но бомбардировать им не анод, а полупроводник, вводя в него носители заряда. Поскольку энергия электронного пучка может быть очень велика, то носителей заряда в полупроводнике на каждый падающий электрон образуются тысячи. Другой вариант гибридного прибора – это вакуумный полевой триод. Он похож на полевой транзистор, только затвор отделен не твердым диэлектриком, а вакуумом. Между прочим, газоразрядный прибор тоже можно «скрестить» с вакуумным, и тоже несколькими способами.

Чтобы лампа реально существовала и работала, мало придумать принцип ее работы и конструкцию. Лампу, как и любую вещь, надо сделать. Когда все упирается в технологию? Довольно часто. Особенно если попытаться сделать что-то новое – ЭВП рекордной мощности, КПД или частоты. Оказывается, что либо нельзя сделать такую конструкцию, как хочется, либо сделать можно, но нет материалов, при использовании которых все это сможет работать. Выход из положения – создание новой технологии или новых материалов.

Собственно технология начинается с исходных материалов. Своих материалов требует любая область техники; а специфика состоит в том, какие именно материалы и с какими именно свойствами требуются. Например, металл А, особо чистый по примесям В, С и Д – это обычная формулировка. Но А, В и т.д. – в каждой области свои. Электротехнике страшны те примеси к меди, которые понижают электропроводность – P и Si. Технике электронных ламп страшны примеси Cd, Zn и O к меди, на электропроводность не влияющие. Ниже мы объясним, почему.

Есть требования и по структуре – материал может иметь кристаллическую структуру, и в этом случае важно, какого размера эти кристаллы и как они расположены. Причем как примеси, так и структура могут быть важны не только для работы лампы, но и для процессов изготовления: примесь (S в меди) или структура (длинные одинаково ориентированные кристаллы), которые делают металл хрупким, не дадут применить пластическое деформирование (гибку, выдавливание).

Проблемой исходных материалов для техники электронных ламп занимались целые институты, были опубликованы тысячи статей, есть и книги на эту тему. Все это не аргумент, – скажете вы, – мало ли кто занимался ерундой, мало ли дурацких книг было издано. Но в крупнейших электронных фирмах были специальные металлургические отделы. Те, кто делал лампы, считали необходимым иметь свою собственную металлургию.

Многие технологические проблемы сводятся к выбору материала. Причем ситуация обычно устроена так, что материал, который способен выдерживать более высокие температуры (например, тугоплавкие и прочные при высоких температурах молибден и вольфрам), будет и нагреваться сильнее (например, из-за плохой проводимости и плохой теплопроводности). Чистых металлов в природе не так уж много, но сплавов – не счесть. Вдобавок есть еще композитные материалы – например, смесь (не сплав) вольфрама и меди – сочетающие высокие проводимость, теплопроводность и прочность.

После того, как изготовлены и разложены по полкам на складе исходные материалы, начинается изготовление деталей. Для изготовления деталей ламп применяются те же способы, что и в технике вообще. Но одни применяются чаще, другие реже, а третьи – в каких-то вариантах или модификациях. Например, реже применяется механическая полировка – потому что при ней в поверхность внедряются загрязнения. Вместо нее используют химическую или электрохимическую полировку, а если надо применить именно механический процесс – то шлифовку.

Требования к чистоте деталей в электронной технике намного выше, чем в технике вообще. Чтобы понять, почему это так – достаточно посмотреть на лампу и осознать, что в ней вакуум. В технологии электронных ламп, как и во всей технике, применяются химические способы очистки. Характерное отличие – широкое применение ультразвуковой очистки. Возможно, это связано просто с тем, что технология электронных ламп создавалась позже общетехнической и впитала в себя новые (на тот момент) решения. Затем, взрастив эти решения внутри себя, она стала источником этих решений для остальной техники. Позже такая же ситуация в какой-то мере возникла между техникой электронных ламп и полупроводниковых приборов – вторая строилась на более прогрессивных методах, но первая позже заимствовала их, увидев, как они хороши.

Намного чаще, чем в остальной технике, используют при производстве ламп для очистки отжиг. Если он правильно проведен, то содержание загрязнений уменьшается не только на поверхности, но и в глубине деталей. Там, откуда они все равно при работе лампы попали бы сначала на поверхность деталей, а потом в ее объем. Таким образом, процесс отжига в некотором смысле имитирует работу деталей в лампе.

При отжиге из металлов выделяется в основном водород, иногда азот и кислород. Выделение воды и оксидов углерода – результат взаимодействия диффундирующих из глубины металла водорода и углерода с оксидами на поверхности, поскольку газы диффундируют в металлах не в виде молекул, а в виде отдельных атомов. При значительном содержании углерода желательно, чтобы металл был окислен, так как углерод сам по себе, без реакции с кислородом, с поверхности не удалится – он и не испаряется (при этих температурах), и в реакцию с водородом не вступает. Если же оксида для окисления углерода не хватает, то металл отжигают во «влажном водороде» – смеси водорода и воды – для окисления.

В диэлектриках газы могут диффундировать и в виде молекул, поэтому выделяющиеся из стекол и керамик вода и углекислый газ – не продукт реакций, а их собственные, имевшиеся в объеме вода и углекислый газ. Для удаления примесей в печи должна быть среда, концентрация загрязнений в которой достаточно мала. Иначе загрязнения будут не удаляться из деталей, а насыщать их. Отжиг в вакууме является первым приходящим в голову решением. Но это плохое решение: получить в большой печи, набитой грязными (по меркам электроники) деталями, такой вакуум, какой нужен в лампе, – трудная задача. Поэтому чаще отжигают в водороде, который заодно восстанавливает оксидные пленки. Правда, при этом водород проникает в некоторые металлы; само по себе это не очень опасно – при обработке уже собранной лампы водород относительно легко покидает детали и откачивается насосами. Но нельзя отжигать в водороде металлы, активно поглощающие водород – при поглощении ими водорода они становятся хрупкими.

Кроме того, проникновение водорода в металл опасно, например, если проникший в глубь металла водород соединяется с кислородом, получившиеся водяные пары разрывают металл. Называется это явление «водородная болезнь». Поэтому, например, если используют медь и предполагают позже отжигать детали в водороде, то берут металл с пониженным содержанием кислорода (бескислородную медь). Кроме водорода, детали отжигают в аргоне, а иногда в смесях инертного и восстанавливающегося газов.

Отжечь детали так, чтобы они стали чище «снаружи и изнутри» – сложная задача. В этой области выполнено множество исследований, опубликовано немало статей, а в книгах по технологии электронных ламп отжигу отводится обычно весьма заметное место. Температура, время, состав газа, скорость протока, загружаемые детали – их количество, материал, расположение – все влияет на результат, зачастую непонятным и непредсказуемым образом. Загрязнения переносятся при отжиге с одних деталей на другие; несмотря на избыточное давление, атмосферные газы проникают в печь; лампы, собранные из более тщательно очищенных деталей оказываются грязнее собранных из менее очищенных. Эти и десятки других загадок, успешные и безуспешные попытки их решения – вот что такое ежедневная работа технолога.

Что же до ситуаций, когда хорошо очищенные детали хуже очищенных плохо, то причина такова: при особо тщательной очистке поверхность детали оказывается химически очень активной и мгновенно окисляется при извлечении деталей из печи. Если же очистка производилась не столь «зверски», то слегка окисленные детали далее окисляются уже медленно. Отсюда видна важность проблемы хранения; и действительно, в технике электронных ламп это – отдельная проблема. Существует специальная тара для хранения и транспортировки деталей, их хранят в осушенной и очищенной от пыли среде, а иногда в среде инертного газа или в вакууме.

Отжиг применяется в технологии электронных ламп не только для очистки, он еще применяется для восстановления исходной, равновесной кристаллической структуры, изменившейся при механической обработке. При многих видах механической обработки, особенно при вытяжке и иной пластической деформации, происходит увеличение количества дислокаций (нарушений кристаллической решетки) и изменение размера кристаллов – удлинение в направлении деформации. У такого материала меняются свойства – механические, электрические, химические. В частности, у него становится меньше способность деформироваться – она уже частично (или полностью) израсходована. Для восстановления исходных свойств и, в частности, для возможности дальнейшей деформации надо уменьшить количество дислокаций и измельчить вытянутые кристаллы. Это и происходит при так называемом рекристаллизационном отжиге.