Соответственно, тогда логарифмическая амплитудно-частотная характеристика определяется выражением:
(1.25)Определим частоты сопряжения:
(1.26)Для построения логарифмических частотных характеристик выбираем следующие масштабы:
-одна декада по оси абсцисс-10 см;
-10 дб по оси ординат-2 см;
-90° по оси ординат-4.5 см.
В этих масштабах откладываем:
-по оси частот-сопрягающие частоты;
-по оси ординат-значение
Через точку
проводим прямую с наклоном -40 дб/дек, до частоты сопряженияна частоте
сопрягается следующая прямая с наклоном -20 дб/дек по отношению к предыдущей прямой .Эта прямая проводится до частоты сопряженияна частоте
сопрягается третья прямая с наклоном -20 дб/дек по отношению ко второй прямой.Третья прямая проводится до частоты сопряжения
Полученная таким образом ломаная кривая представляет собой ЛАЧХ разомкнутой нескорректированной квазистационарной системы, первая прямая проходит с наклоном к оси частот-40 дб/дек;вторая-20 дб/дек;третья0 дб/дек;
четвертая-20 дб/дек.
Фазочастотная характеристика нескорректированной разомкнутой системы строится в тех же координатах согласно выражения (1.24) , где
-первое слагаемое
-это прямая, проходящая параллельно оси частот на расстоянии ;-второе-четвертое слагаемые-тангенсоиды с точками перегиба на частотах сопряжения; в области высоких частот асимптотически приближаются к
, а приАлгебраическая сумма ординат всех четырех характеристик дает фазочастотную характеристику нескорректированной разомкнутой системы..
Для определения запасов устойчивости не скорректированной системы по амплитуде и по фазе необходимо:
-точку пересечения суммарной ФЧХ с линией
спроектировать на ЛАЧХ, тогда расстояние проекции этой точки до оси частот будет величиной запаса устойчивости по амплитуде в дб. Если же проекция этой точки окажется выше оси частот, то запаса устойчивости по амплитуде нет.-проекция частоты среза на суммарную ФЧХ относительно линии
определяет величину запаса устойчивости по фазе в градусах, если проекция точки находится выше линии .Произведенные построения показывают, что рассматриваемая система неустойчива как по амплитуде, так и по фазе. С целью достижения заданных показателей качества строим корректирующее звено.
1.3. Построение желаемых ЛАЧХ и ФЧХ скорректированной квазистационарной системы.
1.3.1. Определяется частота среза.
(1.27)где
-время регулирования квазистационарной системы, т.е. один из заданных в условии показателей качества; -коэффициент, зависящий от величины перерегулирования , определяемый по графику зависимости [1],1.3.2. Через точку
проводится участок ЛАЧХ на средних частотах с наклоном –20дб/дек.1.3.3. Определяются сопрягающие частоты
(1.28) (1.29)1.3.4. По частоте
графически находится величина амплитуды в децибелах на низких частотах и через точку проводится участок ЛАЧХ с наклоном -40 или –60 дб/дек. до ее пересечения на сопрягающей частоте с участком ЛАЧХ на низких частотах с наклоном дб/дек.1.3.5. По частоте
графически определяется величина амплитуды в децибелах и через точку проводится прямая с наклоном –40 или –60 дб/дек, которая определяет характер желаемой ЛАЧХ в области высоких частот.По виду желаемой ЛАЧХ построена желаемая ФЧХ и определены запасы устойчивости по амплитуде и по фазе.
Произведенные построения показывают, что запасы устойчивости удовлетворяют заданным в техническом задании на проект.
1.4. Построение ЛАЧХ корректирующего звена системы.
Учитывая то, что передаточная функция разомкнутой скорректированной системы определяется выражением
или
где
- передаточная амплитудно-фазочастотная функция корректирующего звена, имеемЛогарифмируя, получим
(1.31)Из выражения (1.31) следует, что ЛАЧХ корректирующего устройства квазистационарной системы равна разности ЛАЧХ скорректированной и нескорректированной ЛАЧХ соответственно.
Таким образом, вычитая ординаты ЛАЧХ нескорректированной системы из ординат желаемой ЛАЧХ на частотах сопряжения, получим ординаты ЛАЧХ корректирующего устройства, к-рая построена на той же схеме путем соединения частот сопряжения прямымыи с наклонами, соответствующими разностям.
Согласно выполненных построений передаточная функция корректирующего устройства :
(1.32)
(1.33)
Разомкнутая система управления квазистационарным объектом, состоящая из трех звеньев, представлена на рис.2.
рис.2
2.СИНТЕЗ ИНФОРМАЦИОННО-ПАРАМЕТРИЧЕСКОЙ СИСТЕМЫ ИДЕНТИФИКАЦИИ НЕСТАЦИОНАРНОГО ОБЪЕКТА УПРАВЛЕНИЯ.
2.1. Выбор метода синтеза системы.
При снятии наложенных ограничений квазистационарности параметры объекта управления становятся функциями времени. Для выработки управляющих воздействий, близких к оптимальным, необходима информация о параметрическом состоянии объекта управления. Для этого необходимо решение задачи синтеза информационно-параметрической системы идентификации, т.е. нахождение ее структуры и алгоритма функционирования. Для решения поставленной задачи выбирается метод подстраиваемой модели объекта управления с параллельным включением. А в качестве процесса функционирования-итерационный процесс поиска минимизируемого функционала качества
, т.е. отделение процесса определения величины и направления изменения параметра от процесса перестройки параметра. Такой процесс позволяет производить оценку параметра при нулевых начальных условиях на каждом итеративном шаге, что сводит ошибку оценки параметра к и независящей от переходных процессов системы, вызванных перестройкой параметров модели.