2.2. Поиск минимизированного функционала качества.
В качестве минимизированного функционала целесообразно выбрать интегральный среднеквадратический критерий качества вида:
(2.1)
сводящий к
где
и функционал качества приобретает вид
Для нахождения структуры информационно-параметрической системы идентификации и ее алгоритма функционирования необходимо осуществить минимизацию функционала качества (2.2) по настраиваемым параметрам
(2.3)
где
тогда
(2.4)
Полученная система интегро-дифференциальных уравнений (2.3,2.4) описывает структуру контура самонастройки информационно-параметрической системы идентификации по параметру
(2.5)
(2.6)
Здесь
Полученная система интегродифференциальных уравнений (2.5-2.6) описывают структуру контуров самонастройки информационно-параметрической системы по параметру
В целом система интегродифференциальных уравнений (2.3-2.6) описывает структуру информационно-параметрической системы идентификации и ее алгоритм функционирования.
Циклограмма работоспособности информационно-параметрической системы идентификации, поясняющая принцип ее работы, приведена на рис.3
3.ПОСТРОЕНИЕ АДАПТИВНОЙ СИСТЕМЫ УПРАВЛЕНИЯ НЕСТАЦИОНАРНЫМ ДИНАМИЧЕСКИМ ОБЪЕКТОМ.
Полученная структура системы управления квазистационарным объектом (рис.2) обеспечивает устойчивость и заданные показатели качества на интервале квазистационарности
Выработанное управляющим устройством воздействие с учетом информации о параметрическом состоянии нестационарного объекта управления будет сводить к
3.1. Синтез адаптивной системы управления нестационарным объектом с элементами искусственного интеллекта.
Для оценки качества регулируемого процесса нестационарного объекта управления выберем интегральный критерий минимума среднеквадратической ошибки регулируемого процесса, зависящего от изменения параметров объекта управления
где
здесь
Решив выражение (3.1.2) относительно
где
Учитывая то, что на состояние нестационарного объекта управления в каждом
Тогда выражение сигнала ошибки регулируемого процесса
Подставляя значение
(3.1.7)
Минимизируя функционал качества (3.1.7) по вектору настраиваемых параметров регулятора на интервале
(3.1.8)
где
(3.1.11)
Полученные выражения (3.1.8-3.1.11) описывают структуру и алгоритм функционирования системы анализа параметрического состояния нестационарного объекта управления в векторно-матричной форме.
Подставляя значения
Взяв частные производные от минимизируемого функционала качества
(3.1.13)
Тогда
(3.1.15)
Полученные выражения (3.1.13-3.1.15) описывают контур самонастройки системы анализа параметрического состояния и принятия решения по параметру