Смекни!
smekni.com

Реконструкция волоконно-оптической линии связи (стр. 1 из 13)

Содержание

Введение. 4

Обоснование реконструкции магистральной ВОЛС.. 6

Глава 1. Основные принципы цифровой системы передачи STM-64. 7

1.1. Основы синхронной цифровой иерархии. 7

1.2. Методы мультиплексирования информационных потоков. 10

1.2.1. Метод временного мультиплексирования (ТDМ) 10

1.2.2. Метод частотного уплотнения (FDM) 11

1.2.3. Уплотнение по поляризации (PDM) 11

1.2.4. Многоволновое мультиплексирование оптических несущих (WDM) 12

Глава 2. Основные сведения о ВОЛС.. 15

2.1. Волоконно-оптические кабели. 18

2.1.1. Соединение оптических волокон. 19

2.2. Оптическое волокно. Общие положения. 20

2.3. Распространение световых лучей в оптических волокнах. 21

2.4. Моды, распространяющиеся в оптических волноводах. 22

2.5. Одномодовые оптические волокна. 25

2.6. Константа распространения и фазовая скорость. 28

Глава 3. Процессы, происходящие в оптическом волокне, и их влияние на скорость и дальность передачи информации. 31

3.1. Затухание оптического волокна. 31

3.2. Дисперсия. 34

3.3. Распространение световых импульсов в среде с дисперсией. 38

3.3.1. Физическая природа хроматической дисперсии. 43

3.3.2. Влияние хроматической дисперсии на работу систем связи. 44

3.4. Поляризационная модовая дисперсия. 44

3.4.1. Природа поляризационных эффектов в одномодовом оптическом волокне. 45

3.4.2. Контроль PMD в процессе эксплуатации ВОСП. 50

Глава 4. Методы компенсации хроматической дисперсии. 51

4.1. Обзор методов компенсации дисперсии. 51

4.1.1. Оптическое волокно, компенсирующее дисперсию. 53

4.1.2. Компенсаторы на основе брэгговских решеток с переменным периодом. 55

4.1.3. Компенсаторы хроматической дисперсии на основе планарных интерферометров и микро-оптических устройств. 58

4.1.4. Способы компенсации дисперсии, основанные на управлении передатчиком или приемником излучения. 60

Глава 5. Расчет технических характеристик магистральной ВОЛС.. 62

5.1. Паспортные технические данные приемопередающего оборудования и ВОК, используемые при расчетах дисперсии и затухания. 62

5.2. Расчет дисперсии ВОЛС.. 63

5.2.1. Расчет поляризационной модовой дисперсии. 64

5.2.2. Расчет хроматической дисперсии. 64

5.3. Расчет энергетического бюджета. 66

5.4. Расчет линии связи с учетом компенсации дисперсии. 66

Заключение. 69

Список использованных источников информации. 71

Список принятых сокращений. 72

Приложение
Введение

Мир телекоммуникаций и передачи данных сталкивается с динамично растущим спросом на частотные ресурсы. Эта тенденция в основном связана с увеличением числа пользователей Internet и также с растущим взаимодействием международных операторов и увеличением объемов передаваемой информации. Полоса пропускания в расчете на одного пользователя стремительно увеличивается. Поэтому поставщики средств связи при построении современных информационных сетей используют волоконно-оптические кабельные системы наиболее часто. Это касается как построения протяженных телекоммуникационных магистралей, так и локальных вычислительных сетей. Оптическое волокно (ОВ) в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Сегодня волоконная оптика находит применение практически во всех задачах, связанных с передачей информации.

Широкомасштабное использование волоконно-оптических линий связи (ВОЛС) началось примерно 40 лет назад, когда прогресс в технологии изготовления волокна позволил строить линии большой протяженности. Сейчас объемы инсталляций ВОЛС значительно возросли. В межрегиональном масштабе следует выделить строительство волоконно-оптических сетей синхронной цифровой иерархии (SDH). Стремительно входят в нашу жизнь волоконно-оптические интерфейсы в локальных и региональных сетях Ethernet, FDDI, Fast Ethernet, Gigabit Ethernet, ATM.

В настоящее время по всему миру поставщики услуг связи прокладывают за год десятки тысяч километров волоконно-оптических кабелей под землей, по дну океанов, рек, на ЛЭП, в тоннелях и коллекторах. Множество компаний, в том числе крупнейшие: IBM, Lucent Technologies, Nortel, Corning, Alcoa Fujikura, Siemens, Pirelli ведут интенсивные исследования в области волоконно-оптических технологий. К числу наиболее прогрессивных можно отнести технологию сверхплотного волнового мультиплексирования по длине волны DWDM (Dense Wavelength Division Multiplexing), позволяющую значительно увеличить пропускную способность существующих волоконно-оптических магистралей.

Область возможных применений ВОЛС весьма широка — от линии городской и сельской связи и бортовых комплексов (самолеты, ракеты, корабли) до систем связи на большие расстояния с высокой информационной емкостью. На основе оптической волоконной связи могут быть созданы принципиально новые системы передачи информации. На базе ВОЛС развивается единая интегральная сеть многоцелевого назначения. Весьма перспективно применение волоконно-оптических систем в кабельном телевидении, которое обеспечивает высокое качество изображения и существенно расширяет возможности информационного обслуживания абонентов.

Многоканальные ВОСП широко используются на магистральных и зоновых сетях связи страны, а также для устройства соединительных линий между городскими АТС. Объясняется это тем, что по одному ОВ может одновременно распространяться много информационных сигналов на разных длинах волн, т.е. по оптическим кабелям (ОК) можно передавать очень большой объем информации. Особенно эффективны и экономичны подводные оптические магистрали.

В волоконно-оптических линиях связи (ВОЛС) цифровые системы передачи нашли самое широкое распространение как наиболее приемлемые по своим физическим принципам для передачи.

На основе ОК создаются локальные вычислительные сети различной топологии (кольцевые, звездные и др.). Такие сети позволяют объединять вычислительные центры в единую информационную систему с большой пропускной способностью, повышенным качеством и защищенностью от несанкционированного допуска.

Легкость, малогабаритность, невоспламеняемость ОК сделали их весьма полезными для монтажа и оборудования летательных аппаратов, судов и других мобильных устройств.

Обоснование реконструкции магистральной ВОЛС

На участке Тюмень - Ялуторовск проложен волоконно-оптический кабель FujikuraOGNMLJFLAP-WAZESM·10/125x8C тип 3, по которому осуществляется работа цифровой системы передачи (ЦСП) STM-4, обеспечивающей передачу информации со скоростью 622,08 Мбит/с.

Используемая в настоящее время ЦСП не удовлетворяет растущим потребностям клиентов в пропускной способности волоконно-оптической линии связи. Так как объем передаваемой информации постоянно возрастает, необходимо увеличить скорость передачи сигналов по ВОЛС путем реконструкции, которая заключается в замене приемопередающего оборудования ЦСП STM-4 на STM-64.

Перед исполнителем дипломной работы поставлены следующие задачи:

- изучить конструкцию и параметры магистральной ВОЛС Тюмень-Ялуторовск;

- оценить возможность передачи сигнала STM-64 по существующей магистральной ВОЛС Тюмень-Ялуторовск;

- изучить возможные варианты реконструкции ВОЛС и выделить наиболее эффективный.

Глава 1. Основные принципы цифровой системы передачи STM-64

1.1. Основы синхронной цифровой иерархии

Структура первичной сети предопределяет объединение и разделение потоков передаваемой информации, поэтому используемые на ней системы передачи строятся по иерархическому принципу. Применительно к цифровым системам этот принцип заключается в том, что число каналов ЦСП, соответствующее данной ступени иерархии, больше числа каналов ЦСП предыдущей ступени в целое число раз.

Аналоговые системы передачи с ЧРК также строятся по иерархическому принципу, но в отличие от ЦСП для них ступенями иерархии являются не сами системы передачи, а типовые группы каналов.

Цифровая система передачи, соответствующая первой ступени иерархии, называется первичной; в этой ЦСП осуществляется прямое преобразование относительно небольшого числа первичных сигналов в первичный цифровой поток. Системы передачи второй ступени иерархии объединяют определенное число первичных потоков во вторичный цифровой поток и т.д.

В рекомендациях МСЭ-Т представлено два типа иерархий ЦСП: плезиохронная цифровая иерархияPDH и синхронная цифровая иерархия SDH. Первичным сигналом для всех типов ЦСП является цифровой поток со скоростью передачи 64 кбит/с, называемым основным цифровым каналом(ОЦК). Для объединения сигналов ОЦК в групповые высокоскоростные цифровые сигналы используется принцип временного разделения каналов.

Новые технологии телекоммуникаций стали развиваться в связи с переходом от аналоговых к циф­ровым методам передачи данных, основанных на импульсно-кодовой модуляции (ИКМ) и мультиплексировании с временным разделе­нием каналов. В плезиохронной цифровой иерархии PDH мультиплексор сам выравнивает скорости входных потоков путем добавления нужного числа выравнивающих бит в каналы с меньшими скоростями передачи. Отсюда следовали недостатки PDH - невозможность вывода потока с меньшей скоростью из потока с большей скоростью передачи без полного демультиплексирования этого потока и удаления выравнивающих бит. Недостатки PDH вызвали необходимость в разработке синхронной цифровой иерархии SDH, которая позволила вводить/выводить входные потоки без необходимости проводить их сборку/разборку и систематизировать иерархический ряд скоростей передачи [1].

SDH имеет следующие преимущества перед PDH :

- упрощение сети,вызванное возможностью вводить/выводить цифровые потоки без их сборки или разборки как в PDH;

- помехозащищенность- сеть ис­пользует волоконно-оптические кабели (BOК), передача по которым практически не подвержена действию электромагнитных помех;