Смекни!
smekni.com

Автоматизированная система защиты и контроля доступа в помещения (стр. 7 из 13)

Основу структурной схемы микроконтроллера образует внутренняя двунаправленная 8-битная шина, которая связывает между собой все основные узлы и устройств: резидентную память, арифметико-логическое устройство, блок регистров специальных функций, устройство управления и порты ввода/вывода (см. приложение ).

Цоколёвка корпуса AT98C51–20PI и наименования выводов показаны на рис.4.1.

Р1.0 1 40 VCC
Р1.1 2 39 Р0.0
Р1.2 3 38 Р0.1
Р1.3 4 37 Р0.2
Р1.4 5 36 Р0.3
Р1.5 6 35 Р0.4
Р1.6 7 34 Р0.5
Р1.7 8 33 Р0.6
RST 9 32 Р0.7
RXD 10 31 ЕА/VPP
TXD 11 30 ALE
INT0 12 29 PSEN
INT1 13 28 Р2.7
T0 14 27 Р2.6
T1 15 26 Р2.5
WR 16 25 Р2.4
RD 17 24 Р2.3
XTAL2 18 23 Р2.2
XTAL1 19 22 Р2.1
VSS 20 21 Р2.0

Рис. 4.1. Цоколёвка корпуса AT98C51–20PI

AT98C51–20PI выполнен на основе высокоуровневой n–МОП технологии и выпускается в корпусе БИС, имеющим 40 внешних выводов. Для работы микроконтроллера требуется один источник электропитания +5 В. Через четыре программируемых порта ввода/вывода AT98C51–20PI взаимодействует со средой в стандарте ТТЛ–схем с тремя состояниями выхода.

Корпус микроконтроллера (МК) имеет два вывода для подключения кварцевого резонатора, четыре вывода для сигналов, управляющих режимом работы МК, и восемь линий порта 3, которые могут быть запрограмированны на выполнение специализированных функций обмена информацией со средой.

Синхронизация МК. Опорную частоту синхронизации определяет кварцевый резонатор РГ–05 с типом корпуса М, добротностью 2000х103, статической ёмкостью менее 9пФ, допустимым отклонением рабочей частоты ±10х10–6. Кварцевый резонатор имеет гибкий тип выводов, предназначенные для соединений пайкой, миниатюрный плоский корпус, хорошо компонуется в современной аппаратуре. Он подключается к выводам XTAL1 и XTAL2 (рис.4.2). По рекомендации изготовителей микроконтроллера конденсаторы C9 и С10: КД–1 ёмкостью 20пФ каждый.


Системный сброс AT98C51–20PI по рекомендации изготовителей осуществляется путём подачи на вход RST сигнала 1. Для уверенного сброса этот сигнал должен быть удержан на входе RST по меньшей мере в течение двух машинных циклов (24 периода резонатора). Время, необходимое для полного заряда ёмкости, обеспечивает уверенный запуск резонатора и его работу в течение более чем двух машинных циклов.

Связь микроконтроллера с датчиками и исполнительными механизмами обеспечивается через все имеющиеся выходные порты. Из-за низкой нагрузочной способности выходов МК для всех исполнительных механизмов и датчиков потребуются усилители мощности и согласователи уровней напряжений. Произведем их расчет.

Расчет индикаторов. В качестве светодиодов VD1, VD2 применим светоизлучающий диод АЛ336К красного цвета свечения с силой света не менее 40 мкд, а в качестве VD3, VD4 светоизлучающий диод АЛ336Г зеленого цвета свечения с силой света не менее 15 мкд. Для задания тока через светодиоды, последовательно с ними включим резисторы R1,R2,R3,R4. Для согласования микроконтроллера со светодиодами и его защиты будем подключать их через буферные формирователи. Выберем микросхему ТТЛ К155ЛП9 (DD1). Она содержит шесть буферных формирователей с открытым коллектором и повышенным коллекторным напряжением. Ее параметры:

U0вых, не более U1вых, не менее I0вх, не более I1вх, не более Iпот, не более
В В мА мА мА
0,4 2,4 -1,6 0,04 50

Определим номиналы резисторов.

При прямом падении напряжении на светодиоде 2 В и токе свечения 10 мА сопротивление каждого резистора:

R = [Uпит - Uпр]/Iпр =[5-2]/0,01=300 Ом. (4.1)

Рассеиваемая мощность резистора определяется исходя из тока, протекаемого через него по формуле

P = RI2 = 300х0,012 = 0,03 Вт. (4.2)

Таким образом сопротивление резисторов R1,R2,R3,R4 равно по 300 Ом каждый. В качестве номиналов выберем C2-33H–0,125–300Ом–±10%.

Рассчитаем схему связи микроконтроллера с компьютером, которая включает в себя приемник и передатчик. Схема представляет из себя традиционную схему включения транзисторных ключей с буферными элементами [ ].Узел сопряжения с локальной сетью при передаче собран на DD4.2 и транзисторе VT2 совместно с портом Р3.1 (выход TXD — используется как универсальный асинхронный приемопередатчик). Резистор R9 выбирается исходя из тока в линии связи. Приемный узел сопряжения собран на DD4.1 и VT1 с использованием порта Р3.0 (вход RXD — вход данных универсального асинхронного приемопередатчика). Конденсаторы С1,С2,С3,С4 используются для повышения помехоустойчивости. Резисторы R6 и R7 задают рабочую точку ключа , собранного на транзисторе VT1. Нагрузкой каскада является резистор R5.

В качестве буферных элементов используется интегральная микросхема К1533ЛН5, которая представляет из себя шесть буферных логических элементов НЕ. Причем выходы с открытыми коллекторами. Параметры микросхемы:

U0вых, не более U1вых, не менее I0вх, не более I1вх, не более Iпот, не более
В В мА мА мА
0,7 2,4 -1,6 0,04 77

Проведем расчет элементов узла.

Задаемся током линии в передающем каскаде Iл = 20 мА [ ] и Eп = 12В, находим Rк (Rк=R9).

Rк = Eп / Iл = 12/0,02=600 Ом ; ( )

Определим мощность выделяемую на резисторе.

Р=I2*Rк=0,022*600=0,24 Вт; ( )

Rб = В х Rк =100х600=60 кОм ; ( )

где В = 100 - коэффициент усиления транзистора в ключевом режиме.

Задаемся током коллектора транзистора в приемном каскаде Iк = 1 мА и Eп = 5 В , определяем Rк(Rк=R5)в приемном каскаде.

R к = Eп / Iк = 5/0,001=5 кОм ; ( )

Резистор Rб (Rб=R6) в базе находим через В.


Rб = В х Rк = 50 кОм. ( )

Резистор R7 задает рабочую точку транзистора в каскаде , так чтобы он не уходил в область глубокого насыщения и находился на границах активного режима . Он рассчитывается исходя из Uбэ = 0.7 В , Uпор = 6 В.

Iб = Uпор / Rб =6/50000= 0.12 мА ; (4.7)

R7 = Uбэ / Iб =0,7/0,00012= 5.8 кОм.

По цепям питания ставим помехоподавляющие конденсаторы. C1 и С3 выбираются 10n [ ]. Они служат для подавления ВЧ составляющих помех. Конденсаторы С2,С4 выбираются равными 100мк х 16В [ ]. Они служат для подавления НЧ-компонент по питанию. Тогда выберем из [ ] номиналы конденсаторов:

С1,С3 — К10-17 10n+20%

C2,C4 — К50-16 100мк х16В

Выберем номиналы резисторов. Так как при самом большем токе мощность выделяемая на резисторе R9 (R9=Rк) равна 0,24 Вт, тогда R9 выбираем МЛТ- 0,25-5,1кОм±10%. На остальных резисторах выделяется мощность меньше 0,125Вт. Тогда выберем [ ]:

R5 — C2-33H–0,125–5,1кОм–±10%;

R6 — C2-33H –0,125–51кОм–±10%;

R7 — C2-33H –0,125–5,6кОм–±10%;

R8 — C2-33H –0,125–56кОм–±10%;

В качестве транзисторов VT1,VT2 выберем мощный переключающий транзистор КТ972 [ ]. Кроме того в схеме предполагается применить импульсные диоды с малым временем переключения VD5,VD6 — КД521А. Диоды служат для защиты входных каскадов от высоких статических напряжений и импульсных выбросов.

Для питания схемы используются два стабилизированных источника напряжения : + 5 В , + 12 В.

Рассчитаем схему звукового сигнализатора.

На транзисторе VT4 собран блок выдачи сигнала тревоги ,представляющий собой электронный транзисторный ключ , подключенный к порту Р.3.4. Элементы ключа рассчитываются исходя из следующих параметров :

Uбэ = 0.7 В , U1= 3.5 В , Iб = 1 мА.

R14 = Uбэ / Iб = 750 Ом ;

R13 = U1 - Uбэ / Iб = 2,7 кОм.

Нагрузкой каскада является динамическая головка В1 типа 2ГДШ - 4.

Опишем схему считывателя кода идентификатора. Эта схема включения рекомендуется предприятием-изготовителем электронного идентификатора.

На логических элементах DD4.3 и DD4.4 , а также транзисторе VT3 собрано приемно - передающее устройство электронного ключа . Параметры каскада и элементов , рекомендуются изготовителем ключа фирмой “ Touch memory “. Приемная часть передает сигнал на порт Р.3.2 , а передаются управляющие команды с порта Р.3.5. Конденсаторы С5 и С6 служат фильтрами по питанию : С6 - по низким частотам , а С5 - по высоким частотам. Резистор R11 предназначен для защиты схемы от короткого замыкания на входном гнезде. Диоды VD7 и VD8 предназначены для защиты входного каскада от электростатических разрядов. Будем использовать диоды КД521 , как диоды с большим быстродействием , основанным на эффекте Шотки.

Такая же схема применена во втором считывателе кода идентификатора, с тем отличием, что второй считыватель кода подключается к портам Р3.3 и Р3.7 соответственно.

Рассчитаем схему подключения датчиков контроля положения дверей. В схеме используется описанная выше микросхема К1533ЛП9 выполняющая роль буферных элементов (DD2, DD3.1, DD3.2). В качестве датчиков предлагается использовать кнопочные выключатели с самовозвратом. Рассчитаем резисторы R18_R25. Нагрузочный ток выберем равным 5 мА. Тогда