Смекни!
smekni.com

Влияние водопроницаемости биологически активного слоя чернозема выщелоченного на развитие водной эрозии (стр. 4 из 10)

В настоящее время водопрочными агрегатами считаются те, которые в воздушно-сухом состоянии при быстром погружении в воду не теряют форму и не разрушаются до размеров меньших 0,25 мм. Агрегаты, капиллярно смоченные перед погружением в воду и не разрушающиеся в ней, называются условно водопрочными. Условная водопрочности одних и тех же агрегатов всегда выше истинной.

Еще в конце XIX века считалось, что в процессе структурообразования важнейшую роль играют корневые системы растений, гумус и илистые частицы почвы. Корни растений пронизывают почву во всех направлениях и раздвигают почвенные частицы, уплотняя их. Отмирая, корни и корешки способствуют накоплению в почве органического вещества, которое участвует в создании водопрочной структуры.

В настоящее время считают, что ведущую роль в явлении водопрочности структуры играет органическое вещество типа гуминовых кислот. Поглощенному Ca²+ принадлежит вторичная роль, сводящаяся к усилению образующихся водопрочных связей. Декальцирование почвы не приводит потери водопрочности структуры. Извлечение из почвы карбонатов и других соединений Ca привело лишь к снижению механической прочности агрегатов во влажном состоянии. Вымывание из почвы битумов, смол, восков и других веществ тоже существенно не сказалось на водопрочности агрегатов. Удаление же из почвы гуминовой кислоты (с помощью едкого натра) привело к полной потере ее структурности и водопрочности. Замена катиона Ca²+ катионом Na+ приводит к быстрому падению водопрочности почвенных частиц. Наиболее водопрочными являются агрегаты, связанные гуматами Fe, Ca и H.

Физико-химическая сторона явления водопрочности связана с насыщением ионов Ca в почве лишь косвенно. Кальций создает благоприятные условия для развития микроорганизмов, которые участвуют в создании гуминовых веществ в почве.

Решающую роль в процессе возникновения водопрочной микроструктуры в почве принадлежит не всему органическому веществу (гумус), а только гуминовым кислотам и солям этих кислот, которые способны склеивать частицы почвы, а под влиянием высушивания способны переходить в не растворимое состояние. В таблице 2 помещены данные о содержании гумуса и его составе в основных типах почв, в слое 0-20 см..


Таблица 2-Состав гумуса в пахотном горизонте основных типах почв

Почва Содержание гумуса в почве Содержание в гумусе, %
гуминовые кислоты фульвокислоты нерастворимые кислоты
ПодзолистаяСлабоподзолистая лесостепная ВыщелоченныйЧернозем Типичный ОбыкновенныйТемно-каштановаяСероземКраснозем 3,0-4,04,0-6,07,0-8,010,07,0-8,03,0-4,01,0-2,04,0-6,0 15-2525354035342115 4750423937354150 2822201925263233

Для накопления общего гумуса и гуминовых кислот требуются одни и те же природные условия, эти два процесса идут параллельно. В направлении с севера на юг, от зоны подзолистых почв до мощных черноземов, наблюдается увеличение содержания гумуса, а также и процентного содержания гуминовых веществ, далее на юг количество гумуса и гуминовой кислоты резко уменьшается. Исключением из правил являются красноземы, у которых наблюдается довольно большое содержание гумуса и очень низкое содержание гуминовых кислот. Следует отметить, что в подзолистых почвах в слое 0-20 см сосредоточенно больше половины имеющегося в почвенном профиле гумуса, у черноземов в этом слое содержится лишь 25% всего гумуса. Отсюда становится ясным, почему черноземы обладают наиболее прочной структурой. В подзолистых же почвах и сероземах водопрочность микроструктуры выражена слабо.

Все исследованные почвы имеют примерно один и тот же механический состав (тяжелосуглинистый). Следуя от мощных черноземов в направлении с севера на юг, происходит уменьшение гумуса, запаса гуминовых кислот в почве и количестве водопрочных агрегатов. Особое положение, занимают красноземы, что связано с повышением содержания в них железа и алюминия, закрепляющие гуминовые кислоты. Таким образом, между водопрочностью почвенной структуры, количеством органического вещества и его составом существует тесная связь в широком географическом аспекте.

Д.В. Хан (1969) считает, что агрегатное состояние почвы в основном осуществляет совокупность органического вещества, глинистых минералов и поглощенных оснований. Неудовлетворительное структурное состояние подзолистой почвы обусловлено низким содержанием органического вещества, глинистых и других минералов, обладающих высокой адсорбционной способностью. Для улучшения же структурного состояния песчаной почвы требуется не только органическое вещество, но и соответствующие минералы, и поглощенные основания.

По данным того же автора, поглощенные кальций и водород способствуют быстрому распаду органического вещества и, вследствие чего ускоряют образование максимального количества водородных агрегатов почвы уже в течение первых месяцев. Под влиянием поглощенных железа и алюминия органическое вещество разлагается медленно, вследствие чего максимальное количество водопрочных агрегатов почвы образовались только через 12 и 18 месяцев.

Огромное влияние на водопроницаемость оказывает величина агрегатов. Влияние размеров структурных агрегатов на водопроницаемость изучалась С.С Бракиным (1965) на южных черноземах.

Определение водопроницаемости проводилось на водопрочных и неводопрочных агрегатах. Данные этих наблюдений приведены в таблице 3.


Таблица 3-Водопроницаемость почв с различными размерами агрегатов (мм/мин)

Размеры агрегатов, мм 1 час 2 час 3 час
НЕ ВОДОПРОЧНЫЕ АГРЕГАТЫ:7-55-33-22-11-0,50,5-0,25ВОДОПРОЧНЫЕ АГРЕГАТЫ3-22-11-0,50,5-0,25 5,835,605,655,852,401,948,507,502,722,00 2,322,652,803,841,901,675,255,661,231,50 1,972,262,553,671,671,664,963,241,011,42

Водопроницаемость водопрочных агрегатов размером крупнее 1-5 мм значительно выше, чем неводопрочных агрегатов тех же размеров. По мере уменьшения величины неводопрочных агрегатов от 7 до 1 мм водопроницаемость возрастает, у водопрочных же агрегатов наибольшая водопроницаемость наблюдается у агрегатов величиной 3-2 мм с уменьшением величины агрегатов, наблюдается падение водопроницаемости. Водопроницаемость прочных и неводопрочных агрегатов, меньших 1 мм, примерно одинакова. Крупные неводопрочные агрегаты при воздействии на них воды разрушаются, а затем расплываются на более мелкие элементы значительно быстрее, чем водопрочные. Об этом свидетельствуют данные, уменьшения скорости просачивания за второй час наблюдений. Просачивание за второй час наблюдений уменьшилась по сравнению с первым часом наблюдений для водопрочных агрегатов размером от 2 до 3 мм на 38%, у неводопрочных – на 49%. Для третьего часа наблюдений оно уменьшение составило соответственно 42 и 55%. У водопрочных агрегатов размером от 1 до 2 мм скорость просачивания за второй час опыта уменьшилась на 24%, у неводопрочных – на 34%. Снижение водопроницаемости почвы с водопрочными агрегатами протекало интенсивнее, за третий час и она составила соответственно 53 и 37%.

Очень важным фактором, влияющим на водопроницаемость почвы, является ее влажность. Для оценки инфильтрационной способности почвы в зависимости от степени ее увлажнения используется величина дефицита влажности почвы, вычисленную как разность между полной влагоемкостью и ее фактической влажностью в момент опыта.

По данным Г.В. Назарова (1970) суглинистые почвы по мере увеличения влажности становятся менее водопроницаемыми.

Из данных в таблице-4 видно, что при увеличении влажности поверхностного почвенного горизонта и подпочвы с 20 до 45% их водопроницаемость уменьшилась в 6 раз.

Таблица 4-Влияние влажности почвы на ее водопроницаемость

Влажность почвы, % от объема Водопроницаемость, мм/час
Верхний почвенный горизонт Подпочва
204045 1525125 12,72,592,03

При увеличении влажности почвы в слое 0-10 см с 14 до 23% водопроницаемость почвы при дождевании уменьшилась с 47 до 11 мм (64,3 раза), а при влажности 30% впитывание прекратилось.

В опытах М.Н. Заславского (1970) увеличение влажности чернозема карбонатного среднегумусного с 16,8 до 35,5% в слое 0-10 см привело к уменьшению водопроницаемости. При интенсивности дождевания i = 1,0 мм/мин в течение одного часа скорость впитывания уменьшилась с 41,8 до11,4 мм/час, а при интенсивности дождевания i = 2,0 мм/мин в течение 30 мин – уменьшилось с 24,9 до 9,4 мм/час (в 2,6 раза).

Однако существует мнение, что «сухая почва, трудно смачиваясь, оказывает большое сопротивление движению воды, чем относительная влажность». Правда, при этом он отмечает, что в почвах богатых коллойдными соединениями, способных к сильному набуханию, может наблюдаться обратное явление, то есть с увеличением влажности почвы уменьшается ее водопроницаемость.

Для каждого генетического типа почвы существуют свои зависимости между инфильтрацией и различными почвенными характеристиками. Так, инфильтрация подзолистых почв имеет наиболее тесную связь с механическим составом почвы, а инфильтрация черноземов – с содержанием органического вещества.


2. ОБЪЕКТ И МЕТОДИКА ИССЛЕДОВАНИЯ

Объектом исследования явился чернозем выщелоченный, на склоне опытного поля Института агроэкологии. Поле используется с 1914 года, и находилось в землепользовании Красноармейского совхоза, а затем с образованием Красноармейского аграрного колледжа этот участок отошел к нему. Основными культурами, возделываемыми на поле, были яровые зерновые и картофель. Исследования начаты в 2003 году. Выкопав почвенные монолиты, на целине и пашне мы отметили, что мощность гумусово-аккумулятивного горизонта на пашне вверху склона значительно отличалась от его мощность у подножия склона. Вверху склона она составляла 18 см, а внизу – 37см. На целине же мощность гумусово-аккумулятивного горизонта изменялась в пределе ± 2 см.