и т.д., вплоть до
. Максимально возможное число проверок равно таким образом M(M-1).Процедуру принятия решения можно существенно упростить. Действительно, представив правило решения в виде:
если
> , то ,и, разделив левую и правую части неравенства на многомерную плотность вероятности комплексных амплитуд принятого сигнала по элементам пространства распознавания (различения) при условии отсутствия всякого портрета (сигнала)
, когда , находим правило решения в несколько иной форме:если
то , где - отношение правдоподобия зашумленного портрета (сигнала) К-го класса. Это правило решения прежде всего убеждает в том, что число проверок сокращается до числа проверяемых гипотез М-1. Во-вторых, это правило решения убеждает в преемственности задач обнаружения и распознавания. В самом деле, левая и правая части неравенства (правила решения) свидетельствуют о том, что вначале необходимо осуществить оптимальную пространственно-временную и поляризационную обработку каждого элемента портрета (n=1,…N)в соответствии с алгоритмом, рекомендуемый отношением правдоподобияи, распределив комплексные амплитуда принятого сигнала по алиментам пространства распознавания (различения) осуществить совместную обработку элементов каждого К-го портрета (сигнала) (k=1,…M) в соответствии с алгоритмом, рекомендуемым отношением правдоподобия
.Структура устройств распознавания портретов. Оптимальная обработка некоррелированных портретов.
Согласно решающего правила устройство распознавания М портретов должно состоять из устройства пространственно-временной и поляризационной обработки принятого сигнала по всем N элементам пространства распознавания, устройства распределения комплексных амплитуд принятого сигнала по элементам пространства распознавания (устройства формирования портрета), М каналов устройств оптимальной обработки всех К -х портретов (К=1,2...М), устройства сравнения и принятия решения (рис. 5).
Рассмотрим два крайних случая: оптимальную обработку некоррелированных портретов (дальностный, картинный, доплеровский) и оптимальную обработку сильно коррелированных портретов (частотно-резонансный, поляризационный).
В случае некоррелированных портретов многомерная плотность вероятности совокупности комплексных амплитуд
принятого сигнала, относящихся к N элементам пространства распознавания, в отсутствие портрета определяется выражением:где
- дисперсия (мощность) помеховых составляющих принятого сигнала по элементам пространства распознавания .Та же многомерная плотность вероятности при наличии портрета К-го класса
где
- дисперсия (мощность) составляющих К-го портрета по элементам пространства распознаванияОтношение правдоподобия, определяющее структуру оптимальной обработки портрета К-го класса
=
где
- относительная интенсивность n – й комплексной амплитуды К-го портрета, откуда монотонно связанная с отношением правдоподобия величина (натуральный логарифм отношения правдоподобия)где
- весовые коэффициенты,- слагаемое смещения.
Рис.5. Структура устройства распознавания
Полученный алгоритм обработки свидетельствует о том, что оптимальная обработка некоррелированных портретов сводится к их взвешенному некогерентному накоплению со смешением, причем весовые коэффициенты и слагаемые смешения определяется априорно известными сведениями об эталонных портретах, т.е. сведениями об относительной интенсивности их комплексных амплитуд
. Структура устройства оптимальной обработки некоррелированного портрета показана на рис 6.Рис. 6. Структура оптимальной обработки некоррелированного портрета
Представляет большой мировоззренческий и практический интерес вопрос о целесообразности выбора весовых коэффициентов
и слагаемых смешения , рекомендуемого результатами проведенного синтеза устройств оптимальной обработки некоррелированных портретов. Для этого рассмотрим среднее значение случайной величины , лежащей в основе принятия решения, при условии наличия на входе устройства распознавания портрета К-го класса:=
Вводя понятие дифференциальной контрастности n-ых элементов K-го и L -го портретов
находим с учететом разложения
Таким образом, при определенном выборе весовых коэффициентов
и слагаемого смещения , рекомендуемом результатами синтеза, случайная величина на выходе К-го канала при условии наличия портрета К-го класса в среднем всегда больше, чем на выходе любого другого канала, и, следовательно, с вероятностью больше 0,5 будет приниматься решения о наличии портрета К-го класса. При атом следует заметить, что только благодаря указанному выбору весовых коэффициентов и слагаемого смешения оптимальная обработка некоррелированного портрета даже в условиях его относительной энергетической недостаточности будет приводить в большинстве случаев к его правильной классификации.Структура устройств различения сигналов
Задача различения сигналов характерна для радиотехнических систем передачи информации. В то же время для этих систем характерна так называемая задача разделения сигналов. Поясним некоторую терминологическую разницу задач различения и разделения сигналов.
Задача разделения предполагает распределение сигналов по соответствующим каналам многоканальных систем (по числу источников и потребителей передаваемых сообщений). Точное распределение сигналов по каналам необходимо для последующего воспроизведения содержащихся (закодированных) в сигналах передаваемых сообщений с наилучшими в статистическим смысле результатами, т.е. с наименьшими вероятностями ошибочного распределения сигналов (перепутывания) сигналов и с наибольшими вероятностями правильного распределения сигналов.