Смекни!
smekni.com

Блок автоматизированного управления связью (стр. 6 из 19)

ч, (4.25)

. (4.26)

Расчёт надёжности с учётом других видов отказов

Примем к расчёту, что отказы родственных РЭА показывают, что 60 % всех отказов вызвано нарушениями ЭРЭ принципиальной схемы, 30 % - ошибками конструкции и 10 % - нарушениями технологии изготовления и сборки. В этом случае

, (4.27)

где Кк и Кт – поправочные коэффициенты, (их величина выбирается по рекомендации [8]) учитывающие увеличение интенсивности за счёт ошибок в конструкции и нарушений технологии соответственно. Коэффициенты Кк и Кт:

; (4.28)

(4.29)

Тогда,

1/ч.

Рассчитаем надежность блока

Надежность блока с учетом разного количества элементов на плате находится по формуле:

, (4.30)

где

- интенсивность отказа блока, 1/ч;

- количество элементов i-й платы, шт.;

- количество элементов рассчитанной платы, шт.;

- интенсивность отказов рассчитанной платы, шт.

Учитывая, что платы в блоке имеют практически одинаковое число элементов, т.е. отношение, учитывающие отличие плат по количеству элементов, отличается от единицы на величину не более ± 0,04, следовательно, можно пренебречь и допустить, что все платы имеют одинаковое количество элементов. Исходя из этого, рассчитаем надежность блока:

;

(4.31)

; .

(4.32)

Сравним с нормой: 4432,62 > 4000 ч. По полученным данным можно сделать вывод, что блок автоматизированного управленья связью по наработке на отказ может эксплуатироваться, но, учитывая не значительное превышение средней наработки над допустимой наработкой, во время эксплуатации следует не пренебрегать техническим осмотром блока.

4.2 Расчет теплового режима

Исходные данные: размер корпуса

величины воздушных зазоров между нагретой зоной, нижней и верхней поверхностью корпуса

между нагретой зоной и боковыми поверхностями корпуса

температура окружающей среды

Определение температуры корпуса.

Рассчитываем удельную поверхностную мощность корпуса блока,

(4.33)

где

мощность, рассеиваемая блоком в виде теплоты, Вт,
;

Sк площадь внешней поверхности корпуса блока.

(4.34)

По графику на рис. 4.10 [12] задаемся перегревом корпуса блока в первом приближении

.

Определяем коэффициент лучеиспускания для верхней

, боковой
и нижней
поверхностей корпуса:

(4.35)

где

степень черноты
й наружной поверхности корпуса,
.

Для определяющей температуры

(4.36)

рассчитываем число Грасгофа

для каждой поверхности корпуса:

(4.37)

где bm – коэффициент объемного расширения газов;

ускорение свободного падения, м×с-2,
;

определяющий размер
й поверхности корпуса;

кинетическая вязкость газа [12], м2/с,
;

(4.38)

для боковой поверхности

для верхней поверхности

для нижней поверхности

Определяем число Прандтля

из таблицы 4.10 [12] для определяющей температуры
.

Находим режим движения газа, обтекающего каждую поверхность корпуса: