Расчет каскада по постоянному току.
Расчет усилительного каскада производится раздельно по постоянному и переменному токам. Целью расчета по постоянному току является определение положения рабочей точки на характеристиках транзистора и ее температурную стабильность. Расчет по переменному току заключается в определении основных динамических параметров, коэффициентов усиления напряжения, тока и мощности, “шитого и выходного сопротивлений каскада и динамической крутизны. Поскольку характеристики транзистора нелинейные, то единой методики расчета УК не существует. Каскады, работающие при большом уровне сигнала, рассчитывается графоаналитические методом с использованием ВАХ транзистора, а УК с малым уровнем сигнала - аналитическим методом, который основан на использовании эквивалентных схем транзистора. Условно сигнал считается малым, если его амплитуда не превышает 15..20% постоянного значения напряжения в рабочей точке.
Исходные данные:
Rн = 6533 Ом
Umн = 19 В
Пусть коэффициент усиления каскада К=40
Выбираем транзистор:
Выбираем KT503Б(Sin-p-nв=80...240 IКmax=300мА РKmax=0.5Вт). Из входной и выходной характеристик транзистора определяем следующие значения:
в = 140
Примем падение напряжения на сопротилении фильтра:
,где
, Еп = 40Находим напряжение, подводимое к делителю:
Расчёт элементов, обеспечивающих рабочий режим транзистора:
Коэффициент температурной нестабильности S = 3
Сопротивление входной цепи транзистора:
Найдём Rб:
Определяем значение Rэ:
Находим значения R1 и R2:
Напряжение базы Uбп в состоянии покоя:
Определяем ток в цепи делителя базы:
Ток Iд должен в (2...5) раз превышать Iбп
Сопротивление Rф фильтра находим по формуле:
Для нахождения rkприменим 2-й закон Кирхгофа к выходной цепи коллектора:
Поверочный расчёт коэффициента температурной нестабильности S:
Расчет номинальных значений ёмкостей:
Ёмкость Сф определяется из условия получения необходимой фильтрации питающего напряжения:
Расчёт значений ёмкостей С1,С2 и Сэ производятся по формулам:
где
Расчёт динамических параметров усилительного каскада. Эквивалентная схема замещения каскада.
Динамическими параметрами УК являются коэффициенты усиления напряжения, тока и мощности, входное и выходное сопротивления, крутизна усиления. Эти параметры рассматриваются на основе анализа эквивалентной схемы УК для переменных составляющих токов и напряжений. Полная эквивалентная схема замещения каскада содержит следующие элементы: Свх - емкость входной цепи УК, См - емкость монтажа, Сн - емкость нагрузки, Rб= Rl || R2; транзистор замещен Т - образной схемой замещения (элементы r'б, rэ, rk*, Ск* и вI6); зажимы "плюс" и "минус" источника питания Еп закорочены по переменной составляющей. Обычно емкость Сф выбирается такой, чтобы ее сопротивление на самой низкой рабочей частоте было близко к нулю и закорачивало резистор Rф. Поэтому цепочка Rф-Сф на схеме не приведена.
Для упрощения анализа и расчетных соотношений принято рассматривать работу усилительного каскада раздельно в области средних, низких и высоких частот.
Анализ УК в области средних частот
На средних частотах (в центральной области полосы пропускания усилителя) сопротивление емкостей Cl, C2 и Сэ близко к нулю, а сопротивление паразитных емкостей Свх, См, а также емкостей Ск* и Си велико. Поэтому ветви схемы рис.3.2. с Cl, C2 и Сэ могут быть закорочены, а ветви с Свх, См, Ск* и Си разомкнуты.
Входное сопротивление каскада равно параллельному соединению Rвxvt и Rб:
Выходное сопротивление каскада:
Коэффициент усиления напряжения каскада найдём из формулы:
где
Коэффициент усиления тока и мощности:
Крутизна усилительного каскада определится отношением:
Анализ УК в области низких частот:
В области низких частот следует учесть влияние на параметры каскада разделительных конденсаторов Cl и C2 и ёмкости в цепи эмиттера Сэ. При правильном выборе Параметров цепочки Rф-Сф ее влияние на частотную характеристику в области НЧ мало и в данном случае не рассматривается. Эквивалентная схема усилителя в области НЧ получается из схемы (рис.3.2.) путем включения емкостей С1,С2 и Сэ и исключения емкости Ск*.
При переходе к более низким частотам возрастают сопротивления ёмкостей Cl, C2 и Сэ, что приводит к уменьшению токов Iб и Iн и напряжения Uвых. Параметры каскада зависят от частоты. Проанализируем изменения лишь основного показателя коэффициента усиления. С целью упрощения расчетов влияние каждой из указанных выше емкостей рассмотрим отдельно.
Влияние емкости С1.(положим С2 = Сэ = ∞)
Коэффициент усиления каскада в комплексном виде составит:
где
- постоянная времени входной цепиВлияние емкости С2.(положим С1 = Сэ = ∞)
Коэффициент усиления каскада в комплексном виде составит:
где
- постоянная времени выходной цепиВлияние емкости Сэ.(положим С1=С2=∞)
Коэффициент усиления каскада в комплексном виде составит:
где
- постоянная времени эмиттерной цепиТаким образом, рассмотрев влияние конденсаторов Cl, C2 и Сэ раздельно, установили, что каждый уменьшает коэффициент усиления каскада с понижением частоты, причем структура формул одинакова.
При совместном действии рассмотренных емкостей структура формулы коэффициента усиления также не изменится:
где
- эквивалентная постоянная времени каскада в области низких частот:
Эти соотношения позволяют записать выражение для модуля коэффициента усиления и его фазы, которые используются для построения АЧХ и ФЧХ усилителя в области низких частот:
Кн уменьшается при понижении частоты. .Это приводит к появлению частотных искажений. Для их количественной оценки используют коэффициент частотных искажений:
На нижней граничной частоте щн коэффициент Кн уменьшается в корень из двух раз по сравнению с К. На частоте щн Мн= 0.707, а щн фн= 1. Отсюда можно определить щн по заданному значению фн:
Анализ УК в области высоких частот:
Уменьшение коэффициента усиления каскада в области высоких частот (ВЧ) определяется инерционностью транзистора. Эквивалентная схема усилителя для области ВЧ следует из рис. 3.2, если в последней учесть конденсатор Ск* ,а также частотно-зависимые параметры в(jщ) и rk*(jщ)