Содержание
§1. Техническое задание
§2. Теоретические соображения
§3. Выбор RC-цепочки
§4. Расчёт элементов схемы генератора
§5. Требования к источнику питания
§6. Заключение
§7. Список литературы
§1. Техническое задание
Выполнить электрический проект генератора гармонических колебаний на операционном усилителе, удовлетворяющего следующим условиям:
1. Частота генерируемых колебаний fг = 8 кГц;
2. Амплитуда выходного напряжения: Uм.вых.
5 В;3. Сопротивление нагрузки Rн = 75 Ом (кабель);
4. Сформулировать требования к источнику питания;
§2. Теоретические соображения
Генератором гармонических колебаний называют устройство, без постороннего возбуждения преобразующее энергию источника питания в энергию гармонических колебаний. Схемотехнически генератор – это усилитель с глубокой положительной обратной связью. Глубина ПОС подбирается такой, при которой усилитель самовозбуждается и генерирует незатухающие колебания.
Различают генераторы с внешней и внутренней ПОС. Однако, исходя из условий технического задания к курсовому проекту, генераторы с внутренней ПОС не рассматриваются.
Генераторы с внешней ПОС реализуются на усилителе, с выхода которого часть энергии колебания возвращается на вход. Такой генератор представим структурной схемой, показанной на рис. 1. Он состоит из усилителя К и цепи ПОС g. Частотная избирательность, цепи ПОС может обеспечиваться при помощи LC-контуров, пьезоэлектрических и электромеханических резонаторов, а также RC-цепей. Наиболее распространены LC- и RC-генераторы.
Частота колебаний в LC-генераторе fг близка к резонансной частоте контура: f0.
Отсюда видно, что для генерирования колебаний с низкими частотами требуются большие индуктивности и емкости, применение которых ни технологически, ни конструктивно не оправдано.
Частота колебаний RC-генераторов пропорциональна частоте среза RC-цепочек
fг
Малогабаритные резисторы и конденсаторы могут иметь большие номинальные значения параметров, поэтому RC-генераторы предпочтительны в низкочастотной части диапазона. Верхний частотный предел RC-генераторов ограничивается значениями паразитных емкостей и минимальными сопротивлениями R, при которых допустимые силы токов усилителей еще обеспечивают напряжение требуемой амплитуды. Практически такие генераторы используются для генерирования колебаний, частоты которых достигают сотен килогерц.
Учитывая все выше написанное и то, что необходимо выполнить генератор гармонических колебаний с частотой fг = 8 кГц. в качестве частотно избирательной цепочки ПОС выбираю RC-цепь, а усилительным элементом по заданию является операционный усилитель (ОУ).
§3. Выбор RC-цепочки
RC-цепочка может быть подключена как к инвертирующему, так и к неинвертирующему входу ОУ. При подключении RC-цепочки к инвертирующему входу ОУ она должна вносить фазовый сдвиг, равный
. Пример такого генератора показан на рис. 2. Недостаток RC-генератора на инвертирующем усилителе – большое число (не менее 6) элементов в цепи отрицательной обратной связи (ООС), поэтому чаще применяются RC-генераторы с неинвертирующим усилителем. Т.е. RC-цепочка подключается к неинвертирующему входу ОУ.На низких и средних частотах хорошим источником синусоидальных колебаний с малым уровнем искажений служит генератор с мостом Вина (рис. 2). Идея его состоит в том, чтобы создать усилитель с обратной связью, имеющий сдвиг фазы 0° на нужной частоте, а затем отрегулировать петлевое усиление таким образом, чтобы возникли автоколебания. Для гарантированного возбуждения автогенератора при любых колебаниях параметров усилителя и цепи ПОС петлевое усиление должно быть несколько большим, чем единица. После возникновения автоколебаний их амплитуда стабилизируется, в конечном счете, на таком уровне, при котором за счет нелинейного элемента в петле коэффициент усиления снижается до единицы. Упомянутая нелинейность проявляется в амплитудной характеристике ОУ.
Рис. 2
Коэффициент передачи моста Вина
g=Z2/(Z1+Z2) где Z1=R1+1/(j×w×C1), Z2=R2/(1+j×w×C2×R2)
Если R1=R2=R и C1=C2=C то
g=1/(3+j(w×C×R-1/( w×C×R)))
Коэффициент будет вещественным на частоте w0, определяемой из уравнения
w0×C×R-1/(w0×C×R)=0
откуда частота автоколебаний
w0=1/(R×C)
Так как на этой частоте g = 1/3, то для выполнения условия Кg = 1 усилитель при замкнутой цепи ООС должен иметь коэффициент усиления немного больше трех. При меньшем усилении колебания затухают.
Рис. 3
Рассмотрим схему, изображенную на рис. 3. В этой схеме усилительный элемент (ОУ) охвачен положительной и отрицательной ОС.
ОУ в совокупности с ООС, которая представляет собой делитель, составленный из резисторов R3 и R4, является неинвертирующим усилителем. Коэффициент усиления усилителя, при котором возбуждаются колебания, должен быть не меньше трех. Аналитическое выражение для рассчета коэффициента усиления имеет следующий вид: Ku = R3/R4 + 1. Таким образом, для устойчивой генерации, сопротивление резистора R3 должно быть больше сопротивления R4 как минимум в два раза.
ПОС является уже рассмотренный мост Вина (R1, R2, C1, C2).
После возбуждения, за счет нелинейности амплитудной характеристики ОУ коэффициент усиления усилителя будет равен трем, а петлевое усиление единице, что обеспечит генерацию сигнала заданной частота с амплитудой, которая будет равна выходному напряжению в режиме насыщения ОУ.
Рассчитаем элементы схемы:
fг = 8кГц тогда RC = 1/(2*Pi*f)
, где R=R1=R2, а C=C1=C2.R выбираем так, чтобы не перегрузить ОУ по входному току, а ОУ, в свою очередь, должен обладать большим входным и малым выходным сопротивлениями, а также достаточно большим значением входного тока. В качестве операционного усилителя выбираю К153УД1Б.
Его электрические параметры:
Коэффициент усиления: К > 10000
Входной ток: Iвх < 2000 нА
Сопротивление нагрузки: Rн > 2 кОм
Входное сопротивление: Rвх > 0,2 мОм
Выходное сопротивление: Rвых < 200 Ом
Выходное напряжение: Uвых
9 ВЗадаемся сопротивлением R:
R = 47 кОм, тогда С = 1/(2*Pi*8000*47000) =
пФ.Таким образом:
R1 = R2 = 47 кОм
С1 = C2 = 430 пФ
Сопротивления R3 и R4 выбираем таким образом, чтобы
R3/R4 > 2 и R3+R4 >> Rвых ОУ
тогда получим:
R3 = 150 кОм,
R4 = 70 кОм
Схема (рис. 3.) с рассчитанными выше номинальными параметрами элементов, будет генерировать синусоидальные колебания с частотой 8 кГц и выходным напряжением порядка 9 В.
Для согласования с нагрузкой Rн = 75Ом на выходе необходимо поставить эмиттерный повторитель, который должен удовлетворять следующим требованиям: обладать входным сопротивлением намного большим выходного сопротивления генератора, и малым, намного меньшим сопротивления нагрузки, выходным сопротивлением.
Рис. 4
Выходное сопротивление генератора – это сопротивление неинвертирующего усилителя (ОУ, R3, R4, где R3 и R4 - ООС), которое приближенно находится по формуле:
,Рис. 5
Рис. 6
Где Rвых – выходное сопротивление ОУ,
Кu – коэффициент усиления усилителя,
g - глубина ООС.
= 200 Ом.В качестве повторителя, который соответствует всем перечисленным требованиям, подходит ОУ К153УД1Б включенный по схеме рис. 4.
Коэффициент передачи повторителя К = 1.
Входное сопротивление
,Где К – коэффициент усиления ОУ,
Rвх – входное сопротивление ОУ,
Rсф – входное сопротивление ОУ по синфазному сигналу, измеренное на входе (+) относительно земли или общей точки. На низких частотах это сопротивление составляет примерно 100 МОм.
вх.п.= Ом = 100 МОм.Выходное сопротивление
,Где Rвых – выходное сопротивление ОУ.
Ом.Таким образом:
вх.п. = 100 МОм >> = 200 Ом, и = 0.02 Ом << Rн = 75 Ом,эмиттерный повторитель на ОУ К153УД1Б полностью соответствует предъявляемым ему требованиям, а окончательная схема генератора приведена на рис. 5.
Разделительные емкости С3, С4 выбираются таким образом, чтобы их коэффициенты передачи Кп.р. были не меньше
. Это означает, что на каждом из разделительных конденсаторов должно выделяться не больше чем полезной мощности, поступившей от источника.