Смекни!
smekni.com

Герметизація мікросхем (стр. 4 из 7)

Виготовляється велика номенклатура корпусів для ІМС. Усі вони стандартизовані і тому наперед визначають правила встановлення та монтажу ІМС на друкованих платах. Отже, крім прямого призначення, корпус, ІМС повинен мати конструктивні характеристики, особливо за габаритними розмірами і розміщенням виводів.

Промисловість випускає корпуси ІМС круглої та прямокутної форми. Корпус круглої форми – це модифікований металоскляний корпус транзисторів зі збільшеною кількістю виводів. Спочатку кількість виводів було збільшено до 8, а потім – до 12.

Прямокутні корпуси поділяють на дві основні групи: з планарними виводами, розміщеними в площині корпусу, та зі штирьовими виводами. У поперечному розрізі виводи можуть бути круглої, квадратної або прямокутної форми. Велику кількість відводів (до 14) і більший коефіцієнт заповнення об’єму мають прямокутні плоскі корпуси з відводами [3], розміщеними горизонтально чи вертикально, що відображено на рис 2.6.


Рис 2.6 Прямокутні плоскі корпуси [3]:

а – з горизонтальними виводами;

б – з вертикальними виводами.

Плоскі прямокутні корпуси бувають металосклянні, скляні, керамічні і пластмасові. Плоскі металоскляні корпуси мають розміри 9.8 мм, висоту 2 мм, 14 відводів при кроці 0.625 мм. Для герметизації прямокутних корпусів застосовується шовне лазерне, електронно-променеве, ультразвукове чи аргонно-дугове зварювання [3].

Мікросхеми в круглих і прямокутних корпусах зі штирьовими виводами встановлюють на друкованих платах, запаюючи виводи в отворах плат (Рис 2.5, а, 2.б, в). Плати, на які встановлюються корпуси з планарними виводами, не потребують в них отворів: планарні виводи зверху припаюють до контактних площинок плат (Рис 2.5, г), тому планарні виводи можна легко відпаювати під час ремонтних робіт. Мікросхеми з такими виводами можна розміщувати з обох боків друкованої плати.

Кристали мікросхем високого ступеня інтеграції із числом елементів понад

(ВІС) мають велику кількість виводів, що обумовлюють особливості конструкції корпусу. Для розміщення великої кількості виводів із встановленим кроком металокерамічним і пластмасовим корпусам ВІС надають подовженої форми [1].

Велика кількість виводів у корпусі ВІС, а також їхня недостатня механічна міцність збільшують імовірність пошкодження виводів у процесі виробництва та під час транспортування і встановлення мікросхеми в радіоелектронну апаратуру. Через це почали виготовляти корпуси для ВІС без штирьових або планарних виводів (Рис 2.5, д).

За габаритними та приєднувальними розмірами подібні за конструкцією корпуси поділять на типорозміри, кожному з яких присвоюють шифр. В умовне позначення корпусів входять також дві цифри, які відображають кількість виводів. Інтегральні схеми однієї серії монтуються в корпусах одного типу.

Основними напрямками у розвитку корпусів слід вважати зменшення кроку між виводами до 0,625 мм, зменшення довжини виводів, розробку корпусів для технології поверхневого монтажу кристалів (ТПМК). Для ТПМК розроблено мініатюрні корпуси типу SO. За зовнішнім виглядом вони нагадують корпус типу DIP, але коротші та нижчі за нього, мають L-подібні виводи, які можуть підгинатися під корпус. Застосовуючи корпуси SO замість DIP, отримують 30-50% економії площі друкованої плати, вартість зменшується приблизно в 4 рази, об’єм – у 8 разів, маса – у 2-5 разів [2].


3. МЕТОДИ ГЕРМЕТИЗАЦІЇ

3.1 Спаювання

Це технологічна операція з’єднання двох металевих деталей, які перебувають у твердому стані, з допомогою розплавленого матеріалу – припою [3]. Процес спаювання відбувається при нагріванні припою до температури плавлення. Розплавлені частинки припою дифундують у з'єднувальні матеріали, розчиняють їх і при охолодженні утворюють твердий розчин.

Паяння застосовують переважно при монтажі дротом безкорпусних ІМС, напівпровідникових приладів і компонентів на плату в ГІС і МЗб, а також при монтажі кристалів зі стовпчиковими, кульковими і балковими виводами. Паяння виконують без флюсів припоями ПОС-61, ПСр-2,5 та іншими з додаванням до них порошків матеріалів, з яких виготовлена контактна площинка [2].

У деяких випадках складові частини припою можуть, вступати в хімічну реакцію зі з'єднувальними матеріалами утворюючи інтерметалічні сполуки. При охолодженні вони кристалізуються і за рахунок металічного зв'язку з іншими елементами утворюється досить міцне з'єднання. Спаювання в мікроелектроніці застосовується рідко, оскільки цей процес пов'язаний з нагріванням з'єднувальних матеріалів, що негативно впливає на параметри мікросхем. Існують низькотемпературні і високотемпературні припої. Низькотемпературні припої - це ПОС-40, ПОС-61, ПОВн-0,5, а високотемпературні (вище 350 ºС) - ПСр-45, ПСр-72 [3].

Для поліпшення змочування з'єднувальних матеріалів припоєм використовуються флюси на основі каніфолі марок ФКСп, ФПЕт, ФКТС і на основі хлористого цинку ФХЦ. Але флюси дуже забруднюють поверхню мікросхеми або залишаються в невеликих кількостях всередині корпусу після його герметизації. Тому флюси застосовують в рідкісних випадках, а спаювання, як правило, проводять у відновлюваному (водень, формідгаз) чи інертному (аргон, криптон, гелій) середовищі.

Мікроспаювання мікросхем використовується для приєднання відводів до контактних площинок, а також герметизації кришки до основи корпусу. Найчастіше спаювання застосовують для монтажу елементів на плати і дуже рідко при складанні гібридних інтегрованих та напівпровідникових мікросхем. Виникає питання, що ж обмежує застосування паяння при складанні напівпровідникових мікросхем? Це, по-перше, велика тривалість процесу, яка викликає додатковий вплив температури на параметри елементів ІМС. По-друге, вибраний припой не повинен помітно розчиняти матеріал плівкового контакту і утворювати крихкі інтерметалічні сполуки [3]. При складанні ГІМС для підвищення міцності з'єднання збільшують площу паяного контакту, іноді дротики закріплюють спеціальними затискачами чи пропускають дротяні з'єднання через наскрізні отвори у підкладці.

При під'єднанні схеми до контактних площадок важливими
є форма інструменту та вибраний метод нагріву припою.
Найчастіше інструментом є, так званий, "розщеплений електрод",
а нагрівання здійснюється з допомогою струменя гарячого
інертного газу або сфокусованого інфрачервоного випромінювання [3]. Останній метод є безконтактним і забезпечує високу продуктивність спаювання. Таким методом забезпечують складання гібридних тонкоплівкових мікросхем.

Для спаювання відводів до товстоплівкових контактних площинок з провідникових паст проводять попереднє їх лудження методом хвилі припою або трафаретного друку. При лудженні хвилею розплавленого припою, яка створюється з допомогою насоса і сопла, встановленого під кутом до напрямку руху, де проходять товстоплівкові контактні площадки мікросхеми. При такому методі виключається забруднення елементів мікросхеми різними шлаками і залишками флюсів. Застосування додаткового лудження контактних площинок відводів забезпечує підвищену міцність контактів.

Процес спаювання також використовують при герметизації мікросхем в корпусі, коли конструкція і матеріал дозволяють застосовування зварювання. Герметизацію керамічних корпусів здійснюють спаюванням із застосуванням припою, припайних прокладок чи скляної фрити, нанесених на місця з'єднання деталей. У цьому випадку процес проводиться у спеціальних касетах в атмосфері гелію чи водню.

При спаюванні безприпойних прокладок матеріал припою наносять на кришку корпусу. Місця корпусу, де планується з'єднання з кришкою, покривають золотом, щоб розплавлений припой добре змочував місце контакту з основою. Розплав припою забезпечують струменем гарячого інертного газу. Основна складність цього процесу полягає в необхідності локального нанесення золота, срібла чи паладію.

При застосуванні припойних прокладок, які переважно виготовляються з низькотемпературного припою ПОС-61, їх поміщають між кришкою і основою в місці з'єднання. Зібрані корпуси вкладають в спеціальні касети, в яких передбачений пружинний притиск кришки до основи. Після цього зібрану касету з мікросхемами з шлюзом передають в конвеєрну піч, де вона нагрівається до температури плавлення припою. При використанні припою ПОС-61 і флюсів вносяться забруднення в зону спаювання. Це є основним недоліком застосування таких припойних прокладок.

Герметизація скляною фритою проводиться без припойних прокладок. Скляна фрита складається з порошку легкоплавкого скла, старанно перемішаного з розчинником та зв'язуючим додатком. Потім її наносять на з'єднувальні ділянки, підсушують, проводять складання у спеціальних касетах і нагрівають у печі до розплавлення фрити. При затвердженні створюється надійне герметичне з'єднання кришки з корпусом.

Кріплення дискретних безкорпусних елементів здійснюють з допомогою клеїв, спаювання чи зварювання. Основа з активними елементами та гнучкими відводами з допомогою епоксидних смол приклеюється до підкладки, а відводи під'єднуються до відповідних площинок. Епоксидні смоли мають мале осідання при затвердженні і добру адгезію з різними матеріалами, не виділяють шкідливих продуктів, хімічно стабільні і добре поєднуються з різними добавками, які надають смолі необхідну еластичність і теплопровідність, а також корегуючий температурний коефіцієнт лінійного розширення [3].

3.2 Мікроконтактування

Це процес створення нерознімних електричних з’єднань контактних площинок кристала ІМС і компонентів з провідниками; з’єднання провідників з виводами корпусу, внутрішніми та зовнішніми контактними площинками на платі ГІС і МЗб.