Смекни!
smekni.com

Динамический синтез систем автоматического управления (стр. 1 из 9)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Тема: "Динамический синтез систем автоматического управления"


Введение

Существует чрезвычайно большое разнообразие автоматических систем, выполняющих те или иные функции по управлению самыми различными физическими процессами во всех областях техники.

В данной курсовой работе производится динамический синтез следящей системы автоматического управления.

В следящей системе выходная величина воспроизводит изменение входной величины, причем автоматическое устройство реагирует на рассогласование между выходной и входной величинами. Следящая система имеет обратную связь выхода со входом, которая по сути дела, служит для измерения результата действия системы. На входе системы производится вычитание входного сигнала и сигнала с датчика обратной связи. Величина рассогласования воздействует на промежуточные устройства, а через нее на управляемый объект. Система работает так, чтобы все время сводить к нулю рассогласование.

В состав системы входят нелинейности, именно поэтому по характеру внутренних динамических процессов ее относят к нелинейным системам. По протеканию процессов в системе ее относят к непрерывным, т. к. в каждом из звеньев непрерывному изменению входной величины во времени соответствует непрерывное изменение выходной величины.

Для того чтобы линеаризованная система отвечала требуемым показателям качества в установившемся режиме и переходном процессе, она подвергается синтезу, а именно, в нее включается регулятор, который реализует выбранный закон управления. В интересах простоты расчета сводим задачу к такой форме, чтобы максимально использовать методы исследования обыкновенных линейных систем, т. к. теория и различные прикладные методы для них наиболее полно разработаны.

1. Синтез линейной системы

1.1 Анализ исходной системы


Рисунок 1.1 Функциональная схема замкнутой системы,

где

ЭС - элемент сравнения;

УМ – усилитель мощности;

ОУ – объект управления;

КС – кинематическая связь;

ДОС – датчик обратной связи;

Усилитель мощности предполагается безынерционным, но с ограниченной зоной линейности ±UВХmax. В кинематической связи между ОУ и ДОС присутствует люфт (зазор) величиной 2D (рис. 1.2.).

Рисунок 1.2. – Нелинейные характеристики элементов

Передаточные функции ОУ и ДОС известны:


,

где

,

где

Составим структурную схему исходной системы:


Рисунок 1.3 Структурная схема исходной системы

Для линеаризации системы пренебрегаем наличием нелинейных эффектов, то есть, считаем, что:

- усилитель мощности имеет неограниченную зону линейности

- зазор (люфт) в кинематической связи "выход системы – датчик обратной связи" отсутствует и коэффициент передачи равен единице

Усилитель мощности, имея неограниченную зону линейности, будет иметь передаточную функцию вида:


,

где КУМ – коэффициент передачи УМ.

Максимально выходное напряжение усилителя 110В, а зона нелинейности усилителя мощности по входу ±3В.

Тогда получим следующую структурную схему линеаризованной системы.

Uвх(S)
Uвых(S)


Рисунок 1.4 Структурная схема линеаризованной системы

По критерию Гурвица проверим устойчивость замкнутой системы.

Передаточная функция замкнутой системы имеет вид:

(1.1)

Запишем характеристическое уравнение замкнутой системы:

Необходимым условием устойчивости системы является одинаковость знака всех коэффициентов. Данное условие выполняется. Достаточным условием является положительность определителей Гурвица. Т.к. система 4 порядка, то следует проверить знак ∆3.

(В)

Следовательно, замкнутая система устойчива.

Проверим, удовлетворяет ли система требованиям ТЗ.

Т.к. в ТЗ оговариваются только максимальная скорость νmaxи максимальное ускорение εmax, то следует перейти к эквивалентному гармоническому сигналу вида:

с-1

Амплитуду ошибки найдем по модулю передаточной функции по ошибке.

,

,


где

- частотная передаточная функция разомкнутой системы.

Так как

, то справедливо соотношение
.

Поэтому

Тогда, модуль частотной передаточной функции:

(1.2)

Относительную динамическую ошибку системы определим по формуле:

Подставляя значение ωkв формулу, получим

Тогда находим

Относительная динамическая ошибка системы 25,4%, следовательно, система не удовлетворяет требованиям ТЗ.

Проверим, удовлетворяет ли система требованиям ТЗ в переходном режиме, т.е.

Для этого нужно построить график переходной характеристики по выходу ДОС.

Для построения используем программный пакет MathCad

Рисунок 1.5 Переходная характеристика по выходу ДОС