Смекни!
smekni.com

Дослідження математичної моделі WiMax та розрахунок покриття на її основі (стр. 1 из 6)

Міністерство освіти і науки України

Курсова робота

на тему

«Дослідження математичної моделі WiMax та розрахунок покриття на її основі»

Виконав:

Перевірив:

Львів - 2008

Зміст

1.Вступ.....................................................................................................................3

2.Дослідження імітаційної моделі WiMax...........................................................5

3.Теоретичний огляд розрахунку покриття WiMax………....………………..22

3.1 Величина радіусу комірки в залежності від виду модуляції…………..25

3.2 Залежність величини радіусу комірки від чутливості приймача………29

3.3 Залежність величини радіусу комірки від системного підсилення…….31

3.4 Вплив інтерференції на радіус комірки системи WiMax……………….35

3.5 Оцінка впливу зон Френеля на якість сигналу в межах траси WiMax….40

4.Проектування покриття комірки на основі імітаційної моделі......................43

5.Висновок..............................................................................................................46

6.Список літератури..............................................................................................47

1.Вступ

При переході до створення систем широкосмугового радіодоступу з інтеграцією послуг стало зрозуміло, що основні принципи, закладені в безпровідникові системи на попередніх етапах, потребують значної корекції. На сигнальному рівні першочергове значення дістало оптимальне використання спектрального ресурсу радіоканалу при будь-яких співвідношеннях „швидкість – завадозахищеність”. На рівні протоколів стало необхідним забезпечувати заданий рівень якості обслуговування(QoS) будь-якому абоненту мережі. З цією метою в 2004 році був розроблений стандарт IEEE 802.16-2004[164], що являє собою розраховану на введення в міських бездротових мережах (WirelessMAN) технологію без провідного широкосмугового доступу операторського класу. Часто використовується комерційна назва стандарту WiMax(WorldwideInteroperabilityforMicrowaveAccess), що походить від назви міжнародної організації WiMaxForum, в яку входять ряд передових комунікаційних і напівпровідникових компаній.

Основне призначення даних мереж - це надання послуг абонентам по високошвидкісній і високоякісний безпровідній передачі даних, голосу і відео на відстані в декілька десятків кілометрів. У жовтні 2007 року InternationalTelecommunicationUnion ( ITU-R) включив технологію WIMAX стандарту IEEE 802.16 в сімейство стандартів мобільного зв'язку 3G. У мережах WIMAX реалізовані найостанніші досягнення науки і техніки в області радіозв'язку, телекомунікацій і комп'ютерних мереж. Стандарт IEEE 802.16 визначає застосування:

· на фізичному рівні широкосмугового радіосигналу OFDM з множиною піднесучих;

· на канальному рівні використовується сучасний протокол множинного (багатостанційного) доступу TimeDivionMultiplyAccess (TDMA) і ScalableOFDMAccess (SOFDMA);

· на мережевому (транспортному) рівні в мережах WIMAX застосовується IP-протокол передачі даних, що широко використовуваний в більшості сучасних мережах передачі даних, зокрема, в мережі Інтернет.

В більшості випадків проектування мереж WiMaxє досить складним і неоднозначним процесом. Розрахунок покриття відбувається на основі вимірювань рівня завад на місцевості, що потребує значних витрат коштів та часу. В даній роботі пропонується метод оцінки параметрів системи WiMaxна основі математичної моделі, створеної в середовищі системи MatLab. Даний математичний апарат, в деякій мірі, може полегшити процес розрахунку покриття.

2.Дослідження імітаційної моделі WiMax

На фізичному рівні стандарту IEEE 802.16 передбачено три принципово різні методи передачі даних – метод модуляції одної несучої(SC, в діапазоні нижче 11 ГГц - SCa), метод модуляції за допомогою несучих OFDM(orthogonalfrequencydivisionmultiplexing) і метод мультиплексування (множинного доступу) за допомогою ортогональних несучих OFDMA(orthogonalfrequencydivisionaccess). Даний математичний апарат побудований на основіметоду WirelessMAN-OFDM, але може бути легко модифікований під будь-який з перелічених методів.

Режим OFDM – це метод модуляції потоку даних в одному частотному каналі(шириною 1-2МГц і більше) з центральною частотою fc. Ділення на канали – частотне. При модуляції даних під дією ортогональних несучих в частотному каналі виділяється N піднесучих так, щоб fk=fc+k*∆f, де k - ціле число із діапазону [-N/2,N/2]. Відстань між ортогональними несучими ∆f=1/Tb, де Tb – тривалість передачі даних. Крім даних в OFDM-символі передається захисний інтервал, що являється копією кінцевого фрагмента символу. Його тривалість може бути 1/4, 1/8, 1/16 та 1/32 від Tb.

Модуляція OFDM основана на двох основних принципах: розбиття одного каналу із змінними параметрами на паралельні гаусівські канали із різними співвідношеннями сигнал-шум і точне вимірювання характеристик каналу. У відповідності із першим принципом OFDM кожна несуча модулюється незалежно під дією квадратурної амплітудної модуляції. Загальний сигнал вираховується під дією зворотного швидкого перетворення Фур’є як

[1]

де Ck – комплексне представлення символу квадратурної модуляції. Комплексне представлення зручне, оскільки генерація радіосигналу проходить відповідно до виразу

Sk(t) = Ik*cos(2πfc)-Qksin(2πfc) [2],

де Ik і Qk – синфазна і квадратурна складова комплексного символу.

Для роботи алгоритмів ШПФ/ОШПФ зручно, щоб кількість точок відповідала 2^m. Тому число несучих вибирають рівними мінімальному числу Nfff = 2^m. В режимі OFDM стандарту IEEE 802.16 N=200, відповідно Nfff=256. З них 55 створюють захисний інтервал на границі частотного інтервалу каналу. Інші 200 – інформаційні.

У відповідності до другого принципу OFDM для точного визначення параметрів каналу необхідні так звані пілотні несучі частоти, метод модуляції і передаючий сигнал, що точно відомий всім станціям в мережі. В OFDM передбачено використання 8 пілотних частот(з індексами 88, 63, 38 та 13). Інші 192 несучі розбиті на 16 підканалів по 12 несучих в кожному. Ділення на підканали необхідне, оскільки в режимі WirelessMAN-OFDMпередбачена можливість роботи не у всіх 16, а в 1, 2, 4 чи 8 підканалах – тобто закладені передумови OFDMA. Для цього кожний підканал і кожна група має свій індекс(від 0 до 31).

Тривалість корисної частини Tb OFDM-символу залежить від ширини смуги каналу BW та системної тактової частоти(частоти дискретизації) Fs. Fs=Nfff/Tb. Співвідношення Fs/BW=n нормується і в залежності від ширини смуги каналу приймає значення 86/75(BW кратне 1.5МГц), 144/125(BW кратне 1.25МГц), 316/275(BW кратне 2,75МГц), 57/50(BW кратне 2МГц) та 7/8(BW кратне 1,75МГц і у всіх інших випадках).

Для дослідження стандарту WiMaxбула використана фізико-математична імітаційна модель, будова якої збігається із представленою нижче блок-схемою:

Рис.1.1. Математична імітаційна модель стандарту IEEE 802.16 на основі методу WirelessMAN-OFDM

До її складу входять наступні функціональні блоки:

o Randomizer

Рис.1.2. RandomizerWiMax

- PN SequenceGenerator (Генератор псевдовипадкової шумоподібної послідовності)створює псевдовипадкову шумоподібну (PN) послідовність використовуючи лінійний регістр зсуву із зворотнім зв’язком(LFSR).


Рис.1.3. Блок-схема генератора псевдовипадкової шумоподібної послідовності.

LFSR для свого функціонування використовує просту конфігурацію генератора 15-розрядного регістра зсуву (SSRG чи Фібоначчі).

В якості поліному генератора використовується наступна послідовність: 1000000000000011 (Задаючий поліном c(x) = x^15+x^14+1). Дані значення призначенні для визначення зв’язків регістра зміщення. Для будь якого поліному у вигляді двійкового вектора перший і останній біти повинні бути одиницею. Початковий стан регістру зміщення представлений поліномом 100101010000000(16x4A80).

Інформація обробляється кадрами по 280 біт.

- LogicalOperatorXOR (Логічний оператор „виключне або”) виконує логічну операцію XOR між PN послідовністю та вхідним сигналом. В результаті на виході отримується 1 при непарній кількості одиниць на вході, тобто коли лише із одного входу поступає одиниця.

- ZeroPad (Доповнювач нулями)доповнює або відкидає значення у стовпцях для досягання розміру 288 біт. Якщо довжини на вході та виході рівні, блок інформації просто передається. Доповнення та усікання відбувається в кінці сигналу.

o BlockEncoder


Рис.1.4. Блочний кодер WiMax.

- BittoIntegerConverter (Перетворювач біт – ціле десяткове число) перетворює групу із 8 бітів у вихідний сигнал у вигляді цілих чисел. Для прикладу, при вхідному сигналі [0000011100001101] на виході буде [7,13].Із кадру довжиною 288 вхідних біт отримується послідовність із 36 цілих десяткових чисел.

- ZeroPadtoCodeWordSize(Доповнювач нулями до розміру кодового слова) доповнює або відкидає значення у стовпцях для досягання розміру 239 біт. Доповнення відбувається на початку сигналу за допомогою додавання певної кількості нулів.

- Integer-InputRSEncoder(Кодер Ріда-Соломона з цілочисельним значенням на виході) кодує 239 бітне кодове слово(K) кодом Ріда-Соломона із символами із поля Галуа GF(256), в результаті чого отримується повідомлення довжиною 255 біт(N). Тобто додається 16 перевірочних бітів. Даний код може виправляти (N-K)/2=8 символьних помилок(не лише 8 біт). Параметри вибираються так, щоб N-Kбуло парним цілим числом. Тоді значення М визначається як найменше ціле число, що більше чи рівне log2(N+1) і рівне 8. Для конкретизації певних полів Галуа GF(2^M), які формують повідомлення, використовується примітивний многочлен 100011101 (X^8+X^4+X^3+X^2+1). В якості породжуючого поліному використовується поліном, сформований за допомогою команди genPoly = conv(genPoly, [1 gf(2,8)^idx]). Породжуючий поліном відповідає наступній формі: