Смекни!
smekni.com

Електротехніка і спецтехнологія електромонтерів (стр. 1 из 5)

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

УПРАВЛІННЯ ОСВІТИ І НАУКИ ПОЛТТАВСЬКОЇ

ОБЛДЕРЖАДМІНІСТРАЦІЇ

Професійно – технічне училище №49 села Красногорівка

В – Багачанського району Полтавської області

"ЕЛЕКТРОТЕХНІКА і СПЕЦТЕХНОЛОГІЯ електромонтерів "

2009 р.


План

І.Виробництво і використання електричної енергії

1)Що представляє собою Енергія ? (визначення , способи виробництва)

ІІ. Трифазні трансформатори

1)Трифазні електродвигуни

2)Несправності електродвигунів

3)"Перекинута" фаза

4) Визначення придатності електродвигуна

5)Захист електродвигунів

ІІІ. Заземлення і заземлюючі пристрої сільського електрообладнання

1) Призначення заземлюючих пристроїв

2)Опір заземлюючого пристрою

3)Крокова напруга . Напруга дотику

4)Вирівнювання потенціалів

5)Захисні заходи в мережі з ізольованою нейтраллю

6)Захисні засоби в мережі з глухозаземленою нейтраллю

7)Заземлення опор та обладнання повітряних ліній

8) Обладнання , яке підлягає заземленню або зануленню


I. Виробництво і використання електричної енергії

1) Що представляє собою Енергія ?

З усіх видів енергії найчастіше використовується електромагнітна , яку на практиці називають електричною .

Енергія – це кількісна міра руху і взаємодії всіх форм матерії . Будь – який вид енергії має свого носія . Наприклад , механічною енергією володіє вода , що падає на колесо гідротурбіни , заведена пружина ; тепловою – нагрітий газ , пара , гаряча вода .

Носієм електричної енергії є електромагнітне поле , яке виявляється за силовою дією на позитивно заряджені частинки .

Широке використання електричної енергії зумовлює можливістю ефективного перетворення її в інші види енергії (механічну , теплову , світлову , хімічну) з метою приведення в дію машин і механізмів , одержання тепла та світла , зміни хімічного складу речовин , виробництва та обробки металів тощо .

Перетворення електричної енергії в механічну з допомогою електродвигунів дає змогу зручно , технічно досконало й економічно вигідно приводити в рух різного виду робочі машини та механізми (металорозрізальні верстати , прокатні стани , піднімально – транспортні машини , насоси , вентилятори , швейні та взуттєві машини, зерноочищувальні , мукомельні машини тощо).

За допомогою електродвигунів рухаються поїзди , морські та річкові судна , міський транспорт .

Електрифікація робочих машин дає змогу не тільки механізувати , але й максимально автоматизувати силові процеси , оскільки електродвигун дозволяє в широких діапазонах регулювати потужності і швидкості привода .

У багатьох технологічних процесах використовують перетворення електричної енергії у теплову та хімічну . Наприклад, електронагрівання і електроліз дає змогу одержувати високоякісні спеціальні сталі , кольорові метали тощо . Під час електротермічної обробки металів , гумових виробів , пластмаса , скла , деревини одержують продукцію високої якості .

Електрохімічні процеси , які складають основу гальванотехніки , дають змогу одержувати антикорозійне покриття , ідеальні поверхні для відбивання променів і т.д.

Електроенергія є практично єдиним видом енергії для штучного освітлення , оскільки електричні джерела світла забезпечують його високу якість . Завдяки використанню електричної енергії одержані разючі результати в галузі зв’язку , автоматики , електроніці , керуванні та контролі за технологічними процесами .

У таких галузях як медицина , біологія , астрономія , геологія , математика втілюють спеціалізовані електричні прилади , апарати , установки , які забезпечують їх подальший розвиток .

Величезне значення для розвитку науки і техніки мають комп’ютери , які є поширеним і високоефективним засобом наукових досліджень , економічних розрахунків , у плануванні , керуванні виробничими процесами , діагностиці захворювань . Без них не було б розвитку кібернетики , обчислювальної і космічної техніки .

Єдиним недоліком електричної енергії є неможливість запасати її і зберігати ці запаси тривалий час. Запаси електроенергії в акумуляторах , гальванічних елементах і конденсаторах достатні лише для роботи малопотужних установок , причому термін зберігання цих запасів обмежені . Тому електроенергія повинна бути вироблена в такій кількості , яка потрібна споживачам .

Повсюдне використання електроенергії при концентрації природних енергетичних ресурсів в окремих географічних районах зумовило необхідність передачі її на великі відстані , розподіл між електроприймачами у великому діапазоні потужностей .

Електрична енергія легко розподіляється по приймачах довільної потужності. В автоматичній та вимірювальній техніці використовуються пристрої малої потужності (одиниці та частки вата). Водночас є електричні пристрої (двигуни , нагрівальні установи) потужністю в тисячі та десятки тисяч кіловат .

Для передачі та розподілу електричної енергії використовують повітряні лінії електропередачі , кабельні лінії , у цехах промислових підприємств – шинопроводи та електропроводки , які виконують металевими проводами з алюмінію , сталі та міді . У проводах установлюються електромагнітне поле , яке несе енергію .

За наявністю проводів поле досягає великої концентрації , тому передача здійснюється з високим коефіцієнтом корисної дії .

При дуже високій напрузі між проводами починається коронний розряд , що призводить до втрати енергії . Допустима напруга повинна бути такою , щоб при заданому поперечному перерізу провода втрати енергії внаслідок коронного розряду були незначними.

Електричні станції областей нашої країни об’єднані високовольтними лініями передач і утворюють загальну електричну мережу , до якої приєднані споживачі . Таке об’єднання називається енергосистемою , яка дає змогу згладити "пікові" навантаження у ранкові та вечірні години і безперебійно подавати енергію споживачам незалежно від місця їх розташування та оперативно перекидати енергію в ту зону , де споживання енергії в даний момент максимальне .

Безперечно , що без електричної енергії неможливе нормальне життя сучасної цивілізації . Тому надзвичайно важливим є забезпечення високої надійності постачання електроенергії , раціональне її використання , тобто максимальне скорочення втрат в процесі її виробництва , передачі та розподілу .

Для уникнення людством "енергетичного голоду" та усунення шкідливого впливу на навколишнє середовище вчені шукають нові шляхи одержання електричної енергії , збільшенням її потужності та підвищенням коефіцієнта корисної дії установок для перетворення теплової , хімічної , сонячної енергії в електричну . Рівень розвитку продуктивних сил суспільства , здатність виробляти матеріальні блага і створювати кращі матеріальні умови для життя визначається рівнем виробництва і споживання електричної енергії .

Електрична енергія має дві чудові властивості : вона може передаватись на великі відстані з порівняно малими втратами і може легко перетворюватись в інші види енергії .

Зростання масштабів споживання електричної енергії , загострюється проблема охорони навколишнього середовища значно активізували пошуки більш екологічно чистіших способів одержання електричної енергії . У всьому світі проводяться дослідження способів освоєння термоядерної енергії , прямо без машинного перетворення внутрішньої і хімічної енергії в електричну : магнітогідродинамічні , термоелектричні й термоелектронні генератори , паливні елементи тощо .

Трансформатор для невеликої потужностей (десятки ват), які застосовують переважно в лабораторіях і для побутових цілей , мають дуже невеликі розміри . А потужні трансформатори , що перетворюють сотні й тисячі кіловат , є величезними спорудами . Звичайно потужні трансформатори вміщують в сталевий бак , заповнений спеціальним мінеральним маслом . Це поліпшує умови охолодження трансформатора , і, крім того , масло відіграє важливу роль як ізолюючий матеріал . Кінці обмоток трансформатора виводять через прохідні ізолятори, укріплені на верхній кришці бака.

Трансформатор винайшов у 1876 році П. Яблочков , який застосував його для живлення своїх "свічок" , що потребували різної напруги . Трохи пізніше самостійно дійшов думки про створення трансформатора І. Усагін , який демонстрував свій прилад і його застосування в 1882 р.

У 70 – х роках ХХ століття були в основному розроблені конструкції генераторів електричного струму . Це дало змогу перетворити теплову енергію парових машин або падаючої води на електричну .

Проте необхідність в добуванні великих кількостей електричної енергії відразу ж поставила перед технікою інше дуже важливе і принципово цілком нове завдання , а саме транспортування енергії , передавання її з одного місця в інше . До винайдення електричних генераторів це завдання здавалось зовсім нерозв’язним . Справді , якщо ми маємо водяний чи вітровий двигун або парову машину , то ми можемо передати їх механічну енергію тільки верстатові , що розміщений в безпосередній близькості до двигуна . Ця передача з допомогою валів , зубчастих коліс , пасових трансмісій тощо порівняно легко здійснюється на відстань до кількох десятків або , в крайньому разі , сотень метрів , але не можна уявити собі , щоб з допомогою таких пристроїв можна було передавати енергію на відстані кількох кілометрів або десятків кілометрів .

Енергію електричного струму можна передавати по проводах на відстані кількох тисяч кілометрів . Тому , як тільки були створені перші задовільні моделі електричних генераторів , постала проблема централізованого виробництва енергії та її передачі по проводах на значну відстань . Така постановка завдання – виробництва енергії в одному місці і споживання її в іншому – є однією з принципових важливих особливостей енергетики , яка ґрунтується на використанні електричної енергії .