Смекни!
smekni.com

Загальна характеристика датчиків (стр. 4 из 4)

4. Датчики вологості

Сорбційно-ємкісні датчики

Принцип дії таких датчиків заснований на залежності діелектричної проникливості сорбенту від кількості вологи, яка в ньому знаходиться. Шар сорбенту знаходиться між двома пласкими електродами, що утворюють конденсатор. У якості сорбенту використовують окисли металів та кремнію. Сорбційно-ємкісні датчики мають практично лінійну залежність „вологість-ємкість”. Сучасні датчики такого типу мають діапазон вимірювання вологості від 0 до 100%, лінійність у цьому діапазоні 1%.

Резистивні датчики вологості

У датчиків цього типу при зміні вологості змінюється опір сорбенту (чергування шарів пористої платини та полімеру, що нанесені на підложку з кремнію) . Вони є менш точними і мають велику залежність від температури (до 0,6% опору на 1 градус Цельсія). Без кіл температурної компенсації їх можна використовувати тільки у приміщеннях зі стабільними температурними умовами (комори, овочесховища). Діапазон вимірювання вологості: від 30 до 90%, лінійність у цьому діапазоні 5%.

Термісторні датчики вологості

У схемі рис.32 у вимірювальний міст включені два однакові термістори Rt1 та Rt2, що прогріваються струмом від джерела +U.

Рис.3 Термісторний датчик вологості

Різниця між ними у тому, що один з них поміщений у скляну оболонку, а другий – ні. Чим більша вологість, тим більше охолоджується термістор, що не знаходиться у скляній оболонці, тим більше розбаланс мосту, що підсилюється операційним підсилювачем ОП. Тому напруга на виході прямо пропорційна вологості. Перевага такої схеми – у незалежності від температури, бо опори термісторів від температури змінюються однаково.

5. Датчики газу

Датчики газу поділяються на:

- детектори вибухонебезпечних газів;

- детектори токсичних газів;

- детектори вентиляції автомобіля (пари бензину);

- детектори органічних розчинників;

- детектори фреону;

- детектори вуглекислого газу;

- детектори концентрації кисню тощо.

Принцип дії датчика на основі оксиду олова оснований на зміні електропровідності напівпровідникової плівки внаслідок абсорбції газу на її поверхні. Побудова датчика показана на рис.33.

Рис.33. Побудова датчика газу

1 – керамічна трубка тримача; 2 – резистивний нагрівач; 3 – електрод; 4 – затиски; 5 – легований оксид олова.

На трубку з оксиду алюмінію нанесений тонкий шар оксиду олова (SnO2), що легований деякими металами (платина, мідь, нікель, паладій), кожний з яких підвищує чутливість до конкретного газу. При нагріванні до 400°С за допомогою нагрівача на поверхні оксиду олова має місце адсорбція кисню, яка залежить від газу домішки. Тому змінюється електрична провідність датчика. Такий датчик включають у резистивний міст по схемі рис.34. Щоб компенсувати температурну залежність датчика, у такий міст включають також термістор Rt.


Рис.34. Схема включення датчика газу

6. Датчики струму

Звичайно у приладах у якості датчика струму використовують резистор з малим опором і вимірюють падіння напруги на такому резисторі. Але коли струм дуже великий доводиться використовувати дуже малі опори, які важко калібрувати. Вище вже згадувалось, що у якості датчика струму можна використовувати датчик Хола, який є безконтактним датчиком і не вносить похибок у вимірювальне коло. Приклад використання такого датчика показаний на рис.35.


Рис.35 Схема датчика струму

7. Інтерфейси датчиків

Існує велика кількість датчиків з різними вихідними характеристиками. Для сполучення датчиків з аналого-цифровими перетворювачами та іншими вимірювальними засобами потрібні інтерфейси. Це підсилювачі з різними вхідними можливостями. На рис.36 показані чотири типи таких підсилювачів.

Рис.36. Чотири типи підсилювачів датчиків

Інтерфейс першого типу призначений для однополярних датчиків, з досить значною напругою на виході. Якщо така напруга мала (на рівні мілівольт), ця схема непридатна.

Інтерфейс другого типу призначений для двополярних датчиків, дві напруги яких перетворюються у одну вихідну напругу.

Інтерфейс третього типу призначений для „плаваючих” датчиків, у яких напруга не пов’язана з зовнішніми колами (оптоелектронний зв’язок). Інтерфейс четвертого типу – теж саме, але для двополярних датчиків.