Система EutelTracs с точки зрения потребителя, имеет схожие с Inmarsat характеристики компонентов. Состав мобильных терминалов и функциональные возможности систем практически одинаковы, но они используют различные частотные диапазоны. Мобильный терминал системы EutelTracs по своим размерам больше подходит для установки на грузовые машины.
Системы на базе низкоорбитальных спутников, такие, например, как Iridium, Orbcomm, предоставляют те же услуги, что и геостационарные системы. Основное их отличие друг от друга состоит в том, что первые состоят из низкоорбитальных спутников с небольшой высотой орбиты (меньше 1000 км). Для потребителя это означает, что их спутниковые терминалы имеют меньшие размеры и невысокие цены.
Система Iridium имеет глобальную зону покрытия за счет большого количества космических аппаратов — 66. Она предполагает большой перечень услуг:
-телефонная связь;
-передача алфавитно-цифровых сообщений на пейджер;
-переадресация вызова;
-конференц-связь;
-передача факсимильных сообщений;
-голосовая почта и др.
Система Orbcomm предназначается, в основном, для автоматизированного сбора информации о состоянии объектов, предоставления услуг электронной почты, решения навигационных задач.
К системам, обеспечивающим региональную зону покрытия, относятся системы контроля подвижных объектов, в которых объекты не удаляются от диспетчерского пункта дальше фиксированного расстояния (обычно не более 1000 км). В этих системах требуется поддерживать голосовую связь между объектом и диспетчером, оперативно доставлять информацию о местоположении и состоянии транспортных средств. Достаточно условно в этот разряд можно отнести системы на базе:
-транковой (транкинговой) связи;
-сотовой связи;
-коротковолновой связи.
Системы на базе транковой связи могут покрывать значительные площади, позволяя осуществлять «автороуминг» и «автопатчинг», то есть в них, за счет связи отдельных ретрансляторов в единую логическую структуру, потребитель избавляется от необходимости заботиться о переключении радиочастотных каналов при перемещении в рамках всей системы. В мире и в России развернуты и эксплуатируются транковые системы различных стандартов: SmartTrunk, MPT 1327, LTR, SmartZone, EDACS и др.
Системы на базе сотовой связи все более завоевывают рынок России. Многие фирмы выпускают оборудование и предлагают законченные системы. Широкое применение этих систем сдерживают высокая цена бортового комплекта и проблемы перегрузки системы связи.
Наряду с тем, что у многих сложилось впечатление о ненадежности связи на коротких волнах из-за влияния множества факторов на ее качество, коротковолновая связь, тем не менее, позволяет осуществлять передачу данных по каналу с высокой степенью надежности и с достаточно высокой скоростью. Это основано на сочетании современных технологий и достаточного количества резервных радиочастот.
Наиболее интересны в этом направлении разработки австралийских фирм Coden и Barret. Радиостанции этих фирм имеют встроенный механизм автоматического поиска канала связи, обеспечивающий решение задачи нахождения канала наилучшего прохождения сигнала в течение всего сеанса связи. Для передачи цифровой информации предусмотрен встроенный модем.
Системы локальной зоны покрытия работают, как правило, в радиусе до 100 км и чаще всего используются для обеспечения внутригородских перевозок и поиска угнанных автомобилей. В таких системах могут использоваться системы космической, сотовой, транковой и коротковолновой связи отдельно друг о друга или в различных сочетаниях.
По своему назначению AVL можно разделить на системы:
- диспетчерские;
- дистанционного сопровождения;
- восстановления маршрута.
Диспетчерские системы — это системы, в которых осуществляется централизованный контроль в определенной зоне за местоположением и перемещением подвижных объектов в реальном масштабе времени одним или несколькими диспетчерами, находящимися в стационарных оборудованных диспетчерских центрах; это могут быть системы оперативного контроля перемещения патрульных автомашин, контроля подвижных объектов, системы поиска угнанных автомобилей.
Системы дистанционного сопровождения — это системы, в которых производится дистанционный контроль перемещения подвижного объекта с помощью специально оборудованной автомашины или другого транспортного средства; чаще всего такие системы используются при сопровождении ценных грузов или контроле перемещения транспортных средств.
Системы восстановления маршрута — это системы, решающие задачу определения маршрута или мест пребывания транспортного средства в режиме последующей обработки на основе полученных тем или иным способом данных; подобные системы применяются при контроле перемещения транспортных средств, а также с целью получения статистических данных о маршрутах.
В том случае, когда требование получения информации в реальном масштабе времени не является обязательным, одной из наиболее дешевых систем контроля подвижных объектов является использование бортового накопителя параметров движения транспортных средств. Последний работает в режиме «черного ящика», т. е. осуществляет запись координат точек маршрута движения с указанием времени их прохождения, а также фиксирует дополнительную телеметрическую информацию, например, температуру в рефрижераторе, расход топлива, факты открывания дверей фургона и т. д.
Для зональных диспетчерских систем идеальной может считаться получение данных о местоположении подвижного объекта до одного раза в минуту. Системы дистанционного сопровождения требуют большей частоты обновления информации.
Конкретные реализации AVL-систем часто включают в свой состав технические средства, обеспечивающие несколько способов определения местоположения.
Методы определения местоположения, используемые в AVL-системах, по классификации можно разбить на три основных категории:
- методы приближения (зоновые);
- методы навигационного счисления;
- методы определения местоположения по радиочастоте.[1,2]
Примерная классификация методов и на их основе систем AVL приведена в Приложении А.
1.2 Системы на базе методов приближения
Для определения местоположения подвижного объекта на территории города создается сеть контрольных зон. Это достигается с помощью использования достаточно большого количества дорожных указателей или контрольных пунктов (КП1 — КПn), точное местоположение которых в системе известно (рис. 1.2). Местоположение транспортного средства определяется по мере прохождения последним зон действия этих пунктов. Индивидуальный код каждого контрольного пункта передается при этом по радиоканалу в бортовую аппаратуру транспортного средства, которая, в свою очередь, через подсистему передачи данных передает эту информацию, а также свой идентификационный код в подсистему управления и обработки данных. Таким образом, реализуется метод прямого приближения. Данные о местоположении транспортного средства выводятся на экран мониторов диспетчерского пункта (возможно отображение на карте местности). Достоверность получаемой информации во многом зависит от количества и расположения контрольных пунктов.
Однако на практике чаще используется инверсный метод приближения (рис. 1.3): обнаружение и идентификация транспортных средств осуществляется с помощью установленных на них активных, пассивных или полуактивных маломощных радиомаяков, передающих на приемник контрольного пункта свой индивидуальный код, или же с помощью оптической аппаратуры считывания и распознавания характерных признаков объекта, например, автомобильных номеров. Информация от контрольных пунктов передается далее в подсистему управления и обработки данных.
Очевидно, что для зоновых систем точность местоопределения и периодичность обновления данных напрямую зависит от плотности расположения контрольных пунктов на территории действия системы. Методы приближения требуют развитой инфраструктуры связи для организации подсистемы передачи данных с большого числа таких пунктов в центр управления и контроля, а в случае использования оптических методов считывания — требуют и сложной аппаратуры, используемой на всех контрольных пунктах, и поэтому весьма дороги при построении систем, охватывающих большие территории. В то же время, инверсные методы приближения позволяют минимизировать объем бортовой аппаратуры — радиомаяка, либо вовсе обойтись без устанавливаемой на автомашину аппаратуры. Основное применение данных систем — комплексное обеспечение охраны автомашин, обеспечение поиска автомашин при угоне. Примером подобной системы является система КОРЗ, обеспечивающая фиксацию приближения угнанной оборудованной автомашины к посту—пикету ГИБДД. Во многих зарубежных странах зоновые системы функционируют уже длительное время, как для нужд диспетчеризации общественного транспорта, движущегося по постоянным маршрутам, так и для нужд правоохранительных органов.[1]
1.3 Методы местоопределения по радиочастоте
Местоположение транспортного средства определяется путем измерения разности расстояний транспортного средства от трех или более относительных позиций.
Данную группу методов можно условно разбить на две подгруппы:
- радиопеленгация (обобщенно), когда абсолютное или относительное местоположение подвижного объекта определяется при приеме излучаемого им радиосигнала сетью стационарных или мобильных приемных пунктов;
- вычисление координат по результатам приема специальных радиосигналов на борту подвижного объекта (методы прямой или инверсной радионавигации).[1]