а) по степени влияния: полные, частичные;
б) по характеру проявления: окончательные, перемежающиеся;
в) по степени связи: зависимые, независимые;
г) по частоте проявления: однократные, многократные;
д) по характеру возникновения: внезапные, постепенные;
е) по математическим моделям: параметрические, сигнальные;
ж) по видам проявления: обрывы, короткие замыкания, дрейф, переориентация, изменение эффективности.
Задачи диагностирования по следующей схеме (рис. 9.):
Рис. 9. Схема диагностирования по отказам
Для диагностики моделей используется (см. классификацию) множество физических видов отказов – диагностических признаков.
В качестве прямых диагностических признаков соответствующего отказа используют Dli = li- liном – отклонение диагностического параметра li от номинального значения. Косвенные диагностические признаки оценивают через отклонение величины xвых – выходного сигнала объекта (системы).
Разработка диагностического обеспечения системы управления или объекта идет по следующей схеме (рис. 10.):
Рис. 10. Схема разработки диагностического обеспечения системы управления или объекта
Пусть:
а) задана система линейная с постоянными характеристиками на отдельном отрезке времени стационарная, работающая в номинальном режиме;
б) задано множество контрольных точек;
в) задано множество физических отказов с характеристикой отказов;
г) задано множество тестовых и рабочих сигналов управления;
д) задано время диагностирования ОУ (СУ).
Требуется:
Провести техническое диагностирование ОУ (СУ) в целях контроля технического состояния – обнаружение отказов, поиск места и определение причин отказа.
При вероятностных методах распознавания технического состояния системы вероятность постановки диагноза
, где Ni – число состояний объекта из общего числа состояний N, у которых имел место диагноз Di, а P(kj/Di) – вероятность появления диагностического признака kjу объекта с диагнозом Di. Если среди Niсостояний объектов, имеющих диагноз Di, у Nij появился признак kj, тоВероятность появления диагностического признака kjво всех состояниях объекта N независимо от их диагноза с учетом того, что kj появляется только в Nj состояниях объекта, равна:
.Из изложенного выше вытекает, что вероятность совместного появления следующих событий: наличия у объекта диагноза Di и диагностического признака kj – равна:
.Отсюда:
– формула Байеса.Формула Байеса неточно отражает реальное положение при постановке диагноза Di при наличии диагностического признака kj. Дело в том, что в этой формуле априорно (без доказательства, заранее) принято, что все диагностические признаки имеют равную вероятность появления в реальных условиях работы системы, при этом не учитывается информационная ценность того или иного диагностического признака.
Информационная ценность диагностического признака определяется количеством информации, которое вносит данный диагностический признак в описание технического состояния объекта управления (ОУ) или системы управления (СУ).
Количество информации связано с энтропией (степенью неопределенности) состояния системы, чем выше определенность состояния системы (меньше энтропия), тем меньше информации мы получим, изучая (диагностируя) эту систему (о ней и так почти все известно).
Энтропия (степень неопределенности) системы по Шеннону (разработчик теории информации) находят по формуле:
где H(A) – энтропия системы A; P(Ai) – вероятность Ai состояния системы А.
Количество информации определяется как разность энтропии системы в 2-х различных состояниях:
J = H(A1) – H(A2),
где J– количество информации, H(A1) – энтропия 1-го состояния, H(A2) – энтропия 2-го состояния системы.
1. Льюнг Леннарт. Идентификация систем. – М.: Наука, 191.
2. Интеллектуальные системы автоматического управления. / Под ред. И.М. Макарова, В.М. Лохина – М.: Физматпит, 2001.
3. В.О. Толкачев, Т.В. Ягодкина. Методы идентификации одномерных линейных динамических систем. – М.: МЭИ, 197.
4. К.А. Алексеев. Моделирование и идентификация элементов и систем автоматического управления. – Пенза, 2002.
5. Дочф Ричард, Вишоп Роберт. Современные системы управления. – М.: Юнимедиастайп, 2002.
6. С.В. Шелобанов. Моделирование и идентификация систем управления. – Хабаровск, 199.
7. К.В. Егоров. Основы теории автоматического регулирования. – М.: Энергия, 167.