Смекни!
smekni.com

Индивидуальный прием программ спутникового вещания (стр. 5 из 9)

Современное поколение ЦПСВ строится на сверхбольших интегральных микросхемах и располагает большим объемом оперативной и кэш-памяти (по 8 Мбайт и более). Такие функциональные задачи, как демультиплексирование и декодирование видео и звука, решаются на базе одной СБИС. Типовая структурная схема цифрового приемника бытового назначения приведена на рисунке 3.5. Совокупность сигналов в полосе первой ПЧ (0,95…2,15 ГГц) поступает на блок настройки (селектор), который осуществляет предварительное усиление, электронную настройку перестраиваемого полосового фильтра (ППФ) на требуемый канал и преобразование выделенного сигнала на вторую ПЧ fПЧ2= 480 МГц (рисунок 3.6). Рабочий уровень входных сигналов ЦПСВ находится в пределах -65…-35 дБм, где нижний уровень характеризует уверенный прием при слабых сигналах, а верхний – начало искажений из-за перегрузки выходных каскадов. Коэффициент шума приемника около 10 дБ.

Предварительный усилитель обеспечивает согласование его входного сопротивления с кабелем, снижает просачивание мощности гетеродина на вход устройства и определяет коэффициент шума приёмника. ППФ исключает возможное преобразование на частоту fПЧ2входных сигналов, расположенных на зеркальных частотах, и вносит для нихослабление aЗК≥ 40 дБ (рисунок 3.7). Необходимость введения в приёмник ППФ возникает, если диапазон принимаемых частот шире, чем 2 fПЧ2. Перестройка фильтра ППФ осуществляется сопряжённо с перестройкой гетеродина под управлением МК.


Рисунок 3.5 – Типовая структурная схема цифрового приемника

Рисунок 3.6 − Блок настройки с демодулятором и декодером Витерби

В качестве перестраиваемого гетеродина в диапазоне 1,43…2,63 ГГц используется генератор, управляемый напряжением (ГУН) с ФАПЧ. Частотный диапазон гетеродина выбирается выше входных частот, что снижает коэффициент перестройки

и упрощает реализацию ГУН. Здесь fВХ.В, fВХ.Н − верхняя и нижняя частоты диапазона перестройки ГУН, равные 2,63 и 1,43 ГГц соответственно. Относительная нестабильность частоты ГУН определяется стабильностью опорного кварцевого генератора системы ФАПЧ и имеет значения лучшие чем 10-5.

Рисунок 3.7 – Схема подавления зеркальной помехи

Преобразованный на fПЧ2сигнал проходит через фильтр сосредоточенной селекции (ФСС), который определяет частотную избирательность ЦПСВ и ширину его полосы пропускания ΔfВЧ(обычно 36 МГц), и поступает на УПЧ.

В блоке настройки производится автоматическая подстройка частоты (АПЧ) и автоматическая регулировка уровня (АРУ). АПЧ служит для компенсации ухода частоты fПЧ2в процессе эксплуатации. Суть её работы состоит в отслеживании ухода частоты относительно номинального значения fПЧ2и формировании напряжения ошибки, пропорционального этому уходу. По величине ошибки производится изменение параметров перестраиваемого гетеродина для достижения номинального значения fПЧ2. АРУ поддерживает постоянство уровня сигнала на входе фазового демодулятора, при котором реализуется оптимальный режим его работы.

В когерентном фазовом демодуляторе QPSK происходит разделение ФМ-сигнала по двум квадратурным I и Q каналам. В каждом канале на основе балансного смесителя и восстановленной несущей с частотой fПЧ2осуществляется преобразование ФМ-сигнала (фазовое детектирование) в НЧ-диапазон. Процедура восстановления опорного сигнала в QPSK-демодуляторе осложнена тем, что полезный ФМ-сигнал не содержит несущей, поскольку передаётся с двумя боковыми полосами без неё. Для когерентного ФМ-приёма опорное колебание обычно формируют на приеме из информационного сигнала, удаляя из него модуляцию (путём учетверения частоты) и применяя ГУН с ФАПЧ.

Полученная на выходе каждого смесителя искаженная импульсная последовательность проходит через формирующий фильтр Найквиста, АРУ канала и поступает на трёхразрядный АЦП. Фильтр Найквиста выполняет функции последетекторной фильтрации. Он ограничивает полосу спектра импульсной последовательности и снижает межсимвольные искажения. В большинстве реализаций ЦПСВ формирующий фильтр цифровой (трансверсальный) с кососимметричным срезом АЧХ относительно частоты Найквиста и уровня половинной мощности. Наклон среза задаётся коэффициентом скругления αС спектра. Чем больше коэффициент αС, тем меньше относительный уровень боковых колебаний на выходе ФНЧ и быстрее они затухают. Однако с ростом αСувеличивается реально необходимая полоса частот. Согласно (5.2) при символьной скорости BС= 27,5 Мсимв./с и αС= 0,28 полоса ФНЧ BС·(1+αС)/2 составляет 17,6 МГц. В пределах полосы прозрачности фильтра неравномерность АЧХ обычно не превышает 0,5 дБ.

Необходимость применения независимой АРУ в каждом канале вызвана требованием точной установки уровня порога относительно среднего значения амплитуды импульсной последовательности. Расхождение между уровнями в I и Q каналах не должно превышать 0,2 дБ.

В АЦП обеспечивается 8-уровневое квантование импульсов с образованием 3-битной комбинации на отсчёт. Тактовая частота на АЦП поступает с устройства восстановления тактовой синхронизации. Старший разряд в кодовой комбинации характеризует полярность импульса, два младших указывают на разрешённый уровень, к которому принадлежит вершина импульса.

Таким образом, в АЦП помимо информации о «1» или «0» формируются сведения о степени отклонения вершины импульса от порога. Решение о символе в демодуляторе не принимается, а передаётся на декодер. Поскольку на декодер поступает больше информации, чем при двухуровневом квантовании (жёсткое решение), то решение о символе производится по мягкой схеме с более высокой достоверностью. Для канала с тепловыми шумами при наличии 8-уровневого квантования выигрыш в помехозащищённости составляет около 2 дБ. Эта величина только на 0,25 дБ ниже предельного значения, получаемого при бесконечно большом числе уровней квантования.

В качестве устройства с мягкой схемой принятия решения о символе в ЦПСВ используют декодер свёрточного кода Витерби, который также обеспечивает прямое исправление ошибок (FEC – ForwardErrorCorrection) и является первой ступенью блока помехоустойчивого декодирования. В состав декодера входят (рисунок 3.6): деперфоратор, вычислитель метрик путей, процессор, устройство памяти «выживших» путей, выходное решающее устройство, а также устройства ветвевой синхронизации и устранения неоднозначности фазы демодулятора. Вычисления в декодере производятся по алгоритму максимального правдоподобия с использованием метода динамического программирования. Исправляющая способность декодера зависит от относительной скорости свёрточного кода RСК, вероятности ошибок PОШна его входе и длины кодового ограничения. Требуемое значение RСК(1/2, 2/3, 3/4, 5/6 или 7/8) устанавливается в ЦПСВ пользователем с ПДУ или автоматически по наличию сигнала синхронизации. Вместе с изменением RСКизменяется конфигурация «выкалывания» бит в деперфораторе. Недостатком декодера Витерби считается его склонность к размножению и пакетированию ошибок.

В корректоре ошибок, кроме декодера Витерби, используется деперемежитель для борьбы с пакетными ошибками, а также декодер Рида-Соломона и дескремблер. Благодаря деперемежению пакетные ошибки переходят в разряд одиночных и распределяются во времени достаточно равномерно. Это обстоятельство повышает исправляющую способность декодера РС. Наличие в системе перемежителя и деперемежителя приводит к временной задержке сигнала на 187 байт.

Блочный декодер Рида-Соломона (204, 188, t = 8) является второй ступенью прямого исправления ошибок. Он обеспечивает исправление как независимых, так и пакетированных ошибок, и работает в облегченном по уровню ошибок режиме. Декодер исправляет 8 ошибочных байт в пакете из 204 байт.

Дескремблер исключает псевдослучайность, внесенную в цифровой поток на стороне передачи. Механизм дескремблирования основывается на повторном скремблировании цифрового потока при использовании идентичного генератора ПСП и сигналов инициализации скремблера. На выходе дескремблера действует транспортный поток со скоростью данных

, бит/с. (3.6)

Транспортный поток из пакетов по 188 байт поступает на демультиплексор (DEMUX), который идентифицирует пакеты, относящиеся к выбранной пользователем программе. Вследствие сортировки пакетов формируются элементарные потоки видео, звука и данных.

Правильное демультиплексирование цифрового потока осуществляется благодаря прочтению сервисной информации SI, содержащейся в потоке. Алгоритм прочтения SI приведен на рисунке 3.9.

Процесс прочтения начинается с идентификатора PID = 0, по которому определяются транспортные пакеты длиной 188 байт, содержащие таблицу объединения программ PAT. В таблице указаны все номера программ, входящих в цифровой спутниковый пакет, и их идентификаторы. Для настройки приемника производится обращение к PID = 16, с которым связана таблица сетевой информации NIT. Эта таблица содержит зарегистрированный в ETSI номер сети (Network_id) и сведения, по которым приемник может автоматически настроиться на прием (позиция ИСЗ, поляризация, метод модуляции, частота, символьная скорость, относительная скорость кодирования). Далее осуществляется обращение к PID = 1 для анализа содержания таблицы CAT, в которой прописаны идентификаторы транспортных пакетов с данными разрешения на доступ.