Смекни!
smekni.com

Исследование методов разнесенного приема в декаметровом канале связи (стр. 4 из 6)

Рисунок 1 – Модифицированная схема последетекторной обработки

Разнесенные сигналы в первом и втором каналах разнесения обрабатываются в демодуляторах (ДМ), в результате чего вырабатываются напряжения s1 и s2, которые подаются на первое у второе пороговые устройства (ПУ1 и ПУ2). В них эти напряжения сравниваются с нулевым уровнем, в результате чего вырабатываются логические сигналы х1 и х2. Сигнал «1» вырабатывается в случае, если они выше нуля, сигнал «0» – если ниже нуля.

Кроме того, в сумматоре (Σ) находится их сумма s3=s1+s2 , и в третьем пороговом устройстве (ПУ3) она тоже сравнивается с нулем. В результате вырабатывается сигнал x3=1, если она больше нуля, и сигнал x3=0, если эта сумма меньше нуля. Все три логических сигнала поступают на логическую схему (ЛС), где на основе их вырабатывается выходная логическая функция y, являющаяся решением относительно переданного информационного символа. Функция, реализуемая ЛС, определяется следующим. В случае, если сигналы х1 и х2 одинаковы, любой из них (пусть сигнал х1) подается на выход. В случае, если сигналы x1 и x2 различаются, на выход подается сигнал x3.

Пусть передавался сигнал, равный -а/2, соответствующий передаче логического нуля. При этом ошибка может быть, когда, либо оба ПУ выработают одинаковый сигнал «1», либо ПУ выработают разные сигналы, но будет выбран неверный из них. Рассмотрим последнюю ситуацию. Пусть х1=1 и х2=0, (или х1=0 и х2=1). Решение при этом будет приниматься по величине переменной x3. При этом возникнет ошибка, если будет выработан сигнал х3=1 и принято решение, что передавалась логическая единица. Эта ситуация соответствует выполнению неравенства: s1+s2>0, т.е. n1–a+n2–a>0 или n1+n2>2a. Граничная линия между правильным и ошибочным решениями определится уравнением n1+n2=2a. Обе ситуации иллюстрируются одним и тем же рисунком 2. Рассмотрение случая, когда передавалась логическая единица, соответствующая уровню а/2, аналогичными рассуждениями приводит к ситуации, изображенной на рисунке 3. Таким образом, схема, приведенная на рисунке 4, действует так же, как и схема додетекторного сложения, но при этом не требует организации предварительного фазирования складываемых сигналов. Другое преимущество проявляется в случае работы в достаточно широкой полосе в каналах с селективно-частотными замираниями [1, 2, 4]. При этом влияние замираний принимаемых разнесенных сигналов на разных частотах проявляются по-разному и независимо. Взаимный фазовый сдвиг разнесенных сигналов на разных частотах спектра различен. Предварительное фазирование перед сложением не дает результата, при любом взаимном фазовом сдвиге складываемых сигналов какие-то области спектра сигналов будут складываться несинфазно и выигрыш по отношению С/Ш будет отсутствовать. В случае использования последетекторного объединения в описанном виде подобные недостатки отсутствуют.

1.5. Интерференция и методы борьбы с ней

Используемые в сотовой связи дециметровые радиоволны слабо огибают препятствия, т.е. распространяются в основном по прямой, но испытывают многочисленные отражения от окружающих объектов и подстилающей поверхности. Одним из следствий такого многолучевого распространения является более быстрое, чем в свободном пространстве, убывание интенсивности принимаемого сигнала с расстоянием. Другое следствие - замирания и искажения результирующего сигнала.

В условиях бурного роста абонентской базы, особенно в городской среде, мобильному оператору приходится постоянно думать об увеличении пропускной способности своей сети, в частности, за счет максимально возможного переиспользования имеющегося частотного ресурса. Использование одних и тех же частот большим количеством базовых станций практически неизбежно влечет за собой появление зон интерференции, что оказывает серьезное влияние на качество услуг, лояльность абонентов, а значит, в конечном счете на доход оператора. Поэтому вопрос оптимизации сети становится одним из важнейших в деятельности сотового оператора.

Интерференция возникает как от многолучевого распространения радиоволн, так и от использования одних и тех же частот большим количеством базовых станций.

Фактически область существенных отражений ограничивается обычно сравнительно небольшим участком в окрестности подвижной станции - порядка нескольких сотен длин волн, т.е. порядка нескольких десятков или сотен метров. При движении подвижной станции эта область перемещается вместе с ней таким образом, что подвижная станция все время остается вблизи центра области. При сложении нескольких сигналов, прошедших по разным путям и имеющих в точке приема в общем случае различные фазы, результирующий сигнал может быть как несколько выше среднего уровня, так и заметно ниже, причем провалы, или замирания сигнала, образующиеся при взаимной компенсации сигналов вследствие неблагоприятного сочетания их фаз и амплитуд, могут быть достаточно глубокими. Искажения результирующего сигнала, или межсимвольная интерференция, имеет место в том случае, когда более или менее синфазные составляющие сигналы с соизмеримыми амплитудами настолько отличаются по разности хода, что символы одного сигнала «налезают» на соседние символы другого. Колебания уровня (замирания) принимаемого сигнала практически всегда имеют две составляющие - быструю и медленную.

Для борьбы с быстрыми замираниями используются два основных метода: разнесенный прием, т.е. одновременное использование двух или более приемных антенн; работа с расширением спектра - использование скачков по частоте, а также метода CDMA.

Практически при межсимвольной интерференции разности хода в городских условиях могут достигать единиц микросекунд. В методе CDMA, при использовании широкополосных сигналов и рейк-приемников, наиболее сильные сигналы выравниваются по задержке и после этого складываются, так что проблема межсимвольной интерференции в значительной мере снимается. В относительно узкополосных системах сотовой связи, использующих метод TDMA, для борьбы с межсимвольными искажениями применяются эквалайзеры - адаптивные фильтры, устанавливаемые в приемном тракте цифровой обработки сигналов, которые позволяют в некоторой степени компенсировать межсимвольные искажения. Наконец, для борьбы с последствиями многолучевого распространения, а именно для устранения ошибок, обусловленных как замираниями сигналов, так и межсимвольной интерференцией, используется помехоустойчивое канальное кодирование: блочное и сверточное кодирование, а также перемежение. Чем больше интерференция, а это значит меньшая разница между уровнем полезного сигнала и сигнала помехи, качество радио соединения ниже. В таком случае большее количество битов будет передано неправильно, а значит, потребуется большее число защитных, избыточных (redundance) битов, чтобы переданная информация была исправно декодирована. Так как частотная полоса коммуникационного канала ограничена, канал может поместить только определенное число битов. Чем ниже качество соединения, тем в совокупном числе битов будет меньше полезных битов, а больше защитных. Меньшее число полезных битов значит и больше времени для передачи определенного количества информации, что пользователь почувствует как уменьшение скорости передачи.

В GPRS определены четыре схемы кодов в соответствии с качеством радио связи, т.е. в зависимости от уровня интерференции одноименных каналов (C/I - Carrier to Interferer ratio).

А именно, чем выше C/I, тем ниже уровень интерференции одноименных каналов. Для оконечных пользователей это значит повышение скорости передачи данных.

Идея разнесенного приема (английский термин diversity reception, или просто diversity - разнесение) как меры борьбы с быстрыми замираниями заключается в совместном использовании нескольких сигналов, различающихся (разнесенных) по какому-либо параметру или координате, причем разнесение должно выбираться таким образом, чтобы вероятность одновременных замираний всех используемых сигналов была много меньше, чем какого-либо одного из них. Иными словами, эффективность разнесенного приема тем выше, чем менее коррелированы замирания в составляющих сигналах. Кроме того, важны техническая реализуемость и простота используемого метода. В принципе возможны как минимум пять вариантов разнесенного приема:

- с разнесением во времени ; при этом используются сигналы, сдвинутые во времени один относительно другого; этот метод сравнительно легко реализуем лишь в цифровой форме, и улучшение качества приема разменивается на пропускную способность канала связи;

- с разнесением по частоте; при этом используются сигналы, передаваемые на нескольких частотах, т.е. платой является расширение используемой полосы частот;

- с разнесением по углу, или по направлению; при этом прием производится на несколько антенн с рассогласованными (не полностью перекрывающимися) диаграммами направленности; в этом случае сигналы с выходов разных антенн коррелированы тем слабее, чем меньше перекрытие диаграмм направленности, но при этом одновременно падает и эффективность приема (интенсивность принимаемого сигнала), по крайней мере для всех антенн, кроме одной;

- с разнесением по поляризации, когда, например, две антенны принимают сигналы двух взаимно ортогональных поляризаций; практического значения этот вариант не имеет, поскольку в диапазоне СВЧ замирания на разных поляризациях сильно коррелированы;

- с разносом в пространстве, т.е. с приемом сигналов на несколько пространственно разнесенных антенн; это единственный метод, находящий практическое применение, и именно он обычно имеется в виду, когда говорят о разнесенном приеме.