Смекни!
smekni.com

Конструирование конденсаторов переменной ёмкости с механическим управлением (стр. 4 из 6)

Дальнейший расчёт проводится по формуле (1). Форма роторов конденсаторов других типов отличается от полукруглой, поэтому расчёт их очертания производится для ряда значений угла

, взятых через 10-200.

3.2 Определение исходных данных и численный расчёт

Для расчёта КПЕ необходимо предварительно определение минимальной и максимальной ёмкостей контура, числа пластин n, зазора d и радиуса выреза на статорных пластинах r0.

Сmin=40

, Сmax=400

Общее число пластин выбирается на основании следующих соображений: при большом числе пластин длина конденсатора получается чрезмерной, при малом – возрастают размеры каждой пластины, что понижает их жёсткость. Рекомендуется число пластин выбирать так, чтобы длина конденсаторной секции примерно была равна среднему радиусу ротора.

Ориентировочно число пластин можно выбрать по таблице 3.1.

Таб. 3.1

Ck.max, пФ до 750 350-500 200-300 100-150 50-60 40-50 25-35 15-20 до 15
N до 33 15-25 9-11 7-13 7-23 7-14 5-11 3-7 3-5

Для Сmax=400 пФ выбираем число пластин n=20.

Величина зазора d выбирается исходя из размеров конденсатора, требуемой точности, необходимой стабильности и электрической прочности, а также производственно-технологических соображений. Чем больше зазор, тем выше электрическая прочность, стабильность, надёжность и прочность функциональной характеристики и тем легче производство конденсатора. Объём конденсатора примерно пропорционален квадрату величины зазора, поэтому при его увеличении – размеры конденсатора существенно возрастают.

Точное определение зазора по электрической прочности встречает рая трудностей, так как электрическая прочность воздуха зависит от атмосферного давления и других климатических факторов, а также от частоты, расстояния между пластинами, состояния их поверхности и т.д.

Для приближённого расчёта можно исходить из того, что при нормальном давлении допустимая напряжённость поля между пластинами составляет 650-750В/мм (для переменного напряжения высокой частоты).

Величина зазора может быть найдена из соотношения:

.

При напряжениях меньше 200-250 В пробой через воздух не может произойти ни при каких условиях. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений. В этом случае величину зазора следует выбирать, исходя из конструктивных соображений.

Uраб=500 В:

мм. Округлим до 1 мм.

Радиус выреза на статорных пластинах r0 определяется диаметром оси и зазором между осью и кромками статорных пластин. Этот зазор часто в 2-3 раза больше зазора между пластинами. Его уменьшение повышает минимальную ёмкость конденсатора и отрицательно сказывается на стабильности. Обычно величина r0 составляет 5-10мм. Исходя из вышесказанного, определим r0=5мм.

По назначенным данным выполняем расчёт:

Сmin=40 пФ

Сmax=400 пФ

n=20

r0=5мм=0,5см.

d=1мм=0,1см.

(1)

(2)

Следовательно, пластины ротора имеют радиус 3,733 сантиметра.

Теперь нужно сконструировать остальные составляющие конструкции и стабильность конденсатора рассчитать исходя из выбранных материалов и конструктивных решений.

4. Стабильность конденсатора

Изменение ёмкости конденсатора может быть вызвано как воздействием климатических факторов, так и механических. Эти изменения несущественны для конденсаторов, работающих в качестве фильтрующих, блокировочных, а также применяемые в контурах, не задающих частоту и т.п., но они нежелательны, а в ряде случаев и вообще недопустимы для конденсаторов, используемых в контурах, задающих частоту различных генераторов и гетеродинов.

4.1 Температурная неустойчивость КПЕ

Изменения ёмкости под влиянием температуры в основном вызываются изменением линейных размеров пластин и зазоров и изменением диэлектрической проницаемости диэлектриков (в том числе и воздуха), находящихся в электрическом поле конденсатора. Значительные изменения ёмкости чаще всего бывают также из-за коробления различных элементов конструкции. Общий температурный коэффициент конденсатора определяется совместным действием всех перечисленных факторов.

Первым условием, обеспечивающим наибольшую температурную устойчивость конструкции, является отсутствие (или минимальная величина) в её элементах таких температурных напряжений, которые могли бы вызвать перемещение одних деталей по отношению к другим и привести к необратимым деформациям, создающим температурную неустойчивость нециклического (невозвратного) характера.

Вторым условием температурной устойчивости конструкции является координация тепловых деформаций, то есть создание в конструкции таких направлений тепловых перемещений, которые максимально сокращали бы величину изменения переменной ёмкости конденсатора.

Первое условие требует конструкции, в которой температурные деформации одних частей компенсировались температурными деформациями других частей и тем самым устраняли возникновение больших напряжений.

Выполнение второго условия зависит от характера связи частей конструкции конденсатора, образующих его переменную ёмкость. Чем меньше взаимосвязь отдельных элементов конструкции, тем меньше элементы конструкции зависят друг от друга при тепловом перемещении.

Если конденсатор изготовлен из материалов, обладающими одинаковыми коэффициентами линейного расширения и одинаковой теплопроводимостью, то на лицо соблюдение обоих условий. Однако добиться такого удаётся далеко не всегда, ибо чаще всего конструкция состоит из разнообразных материалов с различными свойствами.

4.2 ТКЕ конденсатора переменной ёмкости с плоскими пластинами

На рисунке 4.1 представлена схема плоского конденсатора, причём предлагается сделать пластины и втулки из материалов обладающих различными температурными коэффициентами линейного расширения (ТКЛР)

и
.

Полагая также, что конструкция выполнена таким образом, что при изменении температуры имеют место свободные температурные деформации.

Температурную неустойчивость ёмкости отражает следующая формула:

.

Первое слагаемое представляет ТКПА диэлектрика, т.е.

, второе – температурный коэффициент расширения площади пластин, очевидно:
, третья – есть функция размеров d, k, D и ТКЛР
и
.

Из рисунка 4.1 можно записать соотношения 2d + 2k =D, откуда

. Проделав несложные математические преобразования, получим:

(2)

Если

, то
, то есть определяется только свойствами материала
и среды
. Если
, то
, т.е. ТКЕ переменного конденсатора, сделанного из однородного материала, будет равен ТКЛР этого материала.

4.3 Устройство термокомпенсации в конструкции переменного конденсатора с плоскими пластинами

Формула (2) показывает, что компенсация температурной неустойчивости конденсатора возможна; для этого необходимо лишь выбрать также соотношения k, d,

,
,
, чтобы
. Если пренебречь
, а в воздушных конденсаторах оно мало, то, условие, термокомпенсации, самой, конструкции будет:
, откуда
или