Электронный луч движется очень быстро, прочерчивая экран строками слева направо и сверху вниз по траектории, которая получила наименование растр. Период сканирования по горизонтали определяется скоростью перемещения луча поперек экрана.
В процессе развертки (перемещения по экрану) луч воздействует на те элементарные участки люминофорного покрытия экрана, в которых должно появиться изображение.
Рис. 1.3. Обычный электронно-лучевой монитор представляет собой большую вакуумную колбу, которая содержит три электронных пушки (красную, зеленую и синюю), проецирующих изображение на экран монитора. Высокое напряжение генерирует магнитное поле, управляющее электронным лучом, создающим изображение, которое отображается на экране монитора
Интенсивность луча постоянно меняется, в результате чего изменяется яркость свечения соответствующих участков экрана.
Поскольку свечение исчезает очень быстро, электронный луч должен вновь и вновь пробегать по экрану, возобновляя его. Этот процесс называется возобновлением (или регенерацией) изображения.
В большинстве мониторов частота регенерации, которую также называют частотой вертикальной развертки, во многих режимах приблизительно равна 85 Гц, т.е. изображение на экране обновляется 85 раз в секунду. Снижение частоты регенерации приводит к мерцанию изображения, которое очень утомляет глаза. Следовательно, чем выше частота регенерации, тем комфортнее себя чувствует пользователь.
Очень важно, чтобы частота регенерации, которую может обеспечить монитор, соответствовала частоте, на которую настроен видеоадаптер. Если такого соответствия нет, изображение на экране вообще не появится, а монитор может выйти из строя.
1.3 Многочастотные мониторы
В одних мониторах установлена фиксированная частота развертки.
В других поддерживаются разные частоты в некотором диапазоне (такие мониторы называются многочастотными — multiple-frequencymonitor). Большинство современных мониторов многочастотные, т.е. мoгут работать с разными стандартами видеосигнала, которые получили довольно широкое распространение.
Фирмы-производители для обозначения мониторов такого типа используют различные термины: синхронизируемые (multisync), многочастотные (multifrequency), многорежимные (multiscan), автосинхронизирующиеся (autosynchronous) и с автонастройкой (autotracking).
1.4. Тип экрана монитора
Экраны мониторов Moiyr быть двух типов: выпуклые и плоские.
Экран типичного дисплея выпуклый. Такая конструкция характерна для большинства ЭЛТ (в том числе и телевизионных кинескопов).
Обычно экран искривлен как по вертикали, так и по горизонтали.
В некоторых моделях (SonyFDTrinitron и MitsubishiDiamondTronNF) используется конструкция Trinitron, в которой поверхность экрана имеет небольшую кривизну только в горизонтальном сечении. Кривизна вертикального сечения экрана равна нулю. На таком экране возникает гораздо меньше бликов и улучшается качество изображения. Недостаток этой конструкции — высокая себестоимость производства, а следовательно, и более высокая цена.
На рис. 1.4. показаны типичные электронно-лучевые мониторы выпуклого и плоского типов.
1.5 Цифровые сигналы для электронно-лучевых мониторов
Рис. 1.4. Выпуклый ЭЛТ-монитор (слева) и плоский монитор SonyTrinitronFD (справа)
Последнее слово в технологии электронно-лучевых мониторов — это использование цифрового входа в соответствии со стандартом DVI (DigitalVideoInterface), применяемым в плоскопанельных дисплеях.
Большинство производителей мониторов, например ViewSonic, NEC, ADC, Acer и Samsung, объявили о поддержке этого стандарта в своих электроннолучевых моделях мониторов. При использовании этого интерфейса пользователь получает следующие преимущества: более точная передача цветового спектра, общее улучшение качества изображения, точная автонастройка и др.
Поскольку большинство современных видеоадаптеров выпускаются с аналоговым разъемом VGA (DB-15), такие мониторы поддерживают оба интерфейса — аналоговый и 20-контактный DVI.
Скорее всего, в ближайшее время вся компьютерная индустрия перейдет на цифровую передачу данных между видеоадаптером и монитором.
2. ТИПЫ ВИДЕОАДАПТЕРОВ
Монитору необходим источник входных данных. Сигналы, подаваемые на монитор, поступают из видеоадаптера, встроенного в систему или подключаемого к компьютеру.
Существует три способа подключения компьютерных систем к электронно-лучевому или жидкокристаллическому монитору.
■ Отдельные видеоплаты. Этот метод, для реализации которого требуются разъемы расширения AGP или PCI, обеспечивает наиболее высокий уровень эффективности и максимальную эксплуатационную гибкость при выборе объема памяти и необходимых возможностей.
• Набор микросхем графического ядра, встроенный в системную плату. Эффективность этого метода ниже, чем при использовании отдельных видеоплат, а объем памяти изменить практически невозможно.
■ Набор микросхем системной платы с интегрированным видеоадаптером. Наиболее низкая стоимость любой графической конфигурации и довольно низкая эффективность, особенно для трехмерных игр или работы с графическими приложениями. Раз решающая способность и возможности цветопередачи ниже, чем при использовании отдельных видеоадаптеров.
Как правило, видеоадаптеры используются в большинстве систем, созданных на основе системных плат Baby-AT или АТХ, в то время как в системных платах LPX, NLX и Micro-АТХ обычно используются встраиваемые наборы микросхем графического ядра. Во многих современных недорогих компьютерах, созданных на базе системных плат формфактора Micro-ATX, Flex-ATX или NLX, используются наборы микросхем системной логики с интегрированной видеосистемой, как в серии Intel 810. Модернизация систем с интегрированным графическим ядром (содержащих набор микросхем видеосистемы или набор микросхем системной платы, включающий в себя графическое ядро) обычно осуществляется с помощью отдельной видеоплаты. Однако в системы такого типа разъем AGP, наиболее подходящий для современных быстродействующих видеосистем, обычно не включается.
Термин видеоадаптер (videoadapter) применим к интегрированной или отдельной видеосхеме.
2.1 Сведение лучей
В цветном мониторе используются три электронные пушки. Сами по себе электроны не имеют цвета, но каждая пушка возбуждает свечение люминофора определенного цвета. Все три электронных луча перемещаются по поверхности экрана вместе, и они сходятся в отверстиях теневой маски. Сведение лучей обеспечивает чистоту цветов на экране. В идеале каждый из лучей попадает только на зерна люминофора своего цвета, и результирующее свечение имеет в точности нужный цвет (например, чисто белый). Если один или несколько лучей сведены неточно, они будут засвечивать и зерна не «своего» люминофора, тогда цвет не будет передан правильно. В большинстве случаев плохое сведение приводит к образованию окрашенных теней. Например, рядом с белой линией может появиться красная, зеленая или синяя тень. Сильное нарушение сведения может привести к размытости или искажению изображения.
В документации к мониторам обычно упоминается допустимая величина нарушений сведения — расхождение лучей. Она обычно разная для центра экрана и его краев. Как правило, расхождение лучей в центре экрана не должно превышать 0,45 мм, а на краях — 0,65 мм. Чем больше расхождение лучей, тем хуже качество изображения. К счастью, сведение лучей можно регулировать; регуляторы, как правило, находятся внутри монитора.
2.2 Подушкообразные и бочкообразные искажения
Экран большинства ЭЛТ слегка выпуклый. А цифровое изображение абсолютно плоское (то есть двумерное). Когда плоское (двумерное) изображение проецируется на искривленную (трехмерную) поверхность, возникают искажения. В идеале отклоняющие устройства монитора полностью компенсируют эти искажения, так что при просмотре изображение кажется правильным. На практике, однако, это происходит редко. Границы изображения (верхняя, нижняя, левая и правая) могут быть вогнуты вовнутрь или выгнуты наружу. Эти искажения показаны на рис. 2.1 (в преувеличенном виде). Если границы вогнуты вовнутрь — это подушкообразные искажения. Искажения называются бочкообразными, если границы выгнуты наружу, и изображение напоминает пузатую бочку. В большинстве случаев эти искажения должны быть практически незаметны, не более двух-трех миллиметров. Некоторые специалисты называют бочкообразными все искажения такого типа, в том числе и подушкообразные, хотя это и неверно.
2.3 Развертка, растр, обратный ход луча
Чтобы понять, что такое развертка, вам следует сначала узнать, как формируется изображение на экране монитора. Изображение составляется из горизонтальных линий (строк), начиная с верхнего левого угла экрана (см. рис. 2.2.). Когда луч пробегает по строке, он вызывает свечение точек с яркостью, обусловленной содержимым соответствующего участка видеопамяти, находящейся на видеокарте. Когда строка заканчивается, луч выключается (гасится) и перемещается обратно (одновременно немного опускаясь вниз), к началу следующей строки. Затем рисуется следующая строка. Процесс продолжается, пока не будет нарисована последняя строка, и луч не окажется в правом нижнем углу экрана. Когда картинка на экране будет сформирована, луч выключается и снова перемещается в верхний левый угол экрана, чтобы начать рисование заново.