Задача сумісності реально виникає вже на стадії випробування та налагодження апаратури. Але розв’язування задачі на цій стадії проектування шляхом відповідних конструкторських рішень дещо запізніле, скоріше всього буде дорогим і залишиться незадовільним. Якщо ж питання сумісності вирішуються на самій ранній стадії конструювання, то вдається уникнути до 90% потенційно можливих труднощів, що виникають потім на стадії випробування.
Стійкість РЕЗ до електромагнітних дій можна підвищити за рахунок екранування, раціонального заземлення та інших конструкційних рішень. Цю задачу розв’язують також схемотехнічними або структурними методами. Підкреслимо, що ці методи достатньо загальні й їх розповсюджують на широкий клас електронних засобів, серед яких цифрові засоби обробки сигналів особливо чутливі до зовнішніх та внутрішніх електромагнітних дій.
3.2 Джерела, приймачі та зв’язки завад
Завада – це непередбачена електронною схемою передача напруги, струму чи потужності.
Розрізняють зовнішні та внутрішні завади. Завади, особливо внутрішні, суттєво залежать від конструкції РЕЗ. При аналізі та виборі методів захисту від електромагнітних завад майже завжди в будь-якій конструкції можна виділити джерела завад (ДЗ), приймачі завад (ПЗ) та відповідні механізми зв’язків між ними, або просто зв’язки завад (ЗЗ). ДЗ, ПЗ та ЗЗ структурно зображені на рис.3.1.
Рис.3.1. Джерело, приймач та зв'язок завад
Практично кожний елемент системи при певних конструкторських рішеннях може стати як джерелом завад, так і приймачем завад. Все залежить від відношення вихідної енергії одного елемента та чутливості до сприйняття цієї енергії іншим елементом. Тому вміння правильно визначити дію завад ще на стадії проектування вимагає від конструктора високого професійного рівня і є важливою підставою для досягнення ефективної функціональної роботи РЕЗ при мінімальних затратах коштів.
Найбільш ймовірними джерелами завад можуть бути: мережа змінного струму; потужні генератори ВЧ, особливо імпульсні та працюючі в нелінійному режимі; імпульсні модулятори з високою напругою і великим струмом; вихідні і передкінцеві каскади підсилювачів ВЧ, ПЧ, НЧ; генератори розгортки, особливо з високою напругою і малим часом зворотного ходу; реле та інші перемикаючі прилади; вихідні і силові трансформатори; колекторні електродвигуни тощо.
Найбільш ймовірними приймачами завад можуть бути: всі радіоприймачі, особливо чутливі; вхідні каскади підсилювачів всіх типів; спускові пристрої з високою чутливістю (тригери, вібратори) тощо.
Зв’язки завад можуть здійснюватись через електричне, магнітне чи електромагнітне поле та через з’єднувальні провідники або хвилеводи.
Характеристики поля завад визначаються оточуючим середовищем і відстанню приймача завад (ПЗ) від джерела завад (ДЗ). Поблизу ДЗ властивості поля визначаються, в основному, характеристиками джерела. Далеко від ДЗ властивості поля залежать, головним чином, від середовища, в якому розповсюджується поле завад. Тому простір навколо ДЗ умовно можна поділити на дві зони. Поруч з джерелом розташоване ближнє, або індуктивне поле. На відстані
Рис. 3.2. Характер поля в залежності від відстані до ДЗ
В загальному випадку ближнє поле є електромагнітним. Але при певних обставинах його умовно можна вважати або чисто електричним, або чисто магнітним. Це визначається відношенням напруженості електричного поля Е до напруженості магнітного поля Н, яке називається комплексним хвильовим опором.
Якщо
Прикладом електричного поля є наведення, що випромінює прямий провід, а прикладом магнітного поля може служити наведення, що випромінює петля чи шлейф. Як правило, якщо в джерелі генерується малий струм і висока напруга, то ближнє поле в основному змінне електричне. Якщо в джерелі великий струм і мала напруга, то ближнє поле змінне магнітне.
В ближньому змінному електричному полі його електрична складова затухає пропорційно
Із збільшенням відстані r від джерела значення комплексного хвильового опору в обох випадках зближуються і на відстані
Велике значення має також характер зміни напруженості поля в часі. В зв’язку з цим розрізняють імпульсні, синусоїдальні і коливально затухаючі поля завад. Всі ці випадки мають місце при роботі РЕЗ.
3.3 Застосування еквівалентних електричних схем
Традиційно аналіз роботи РЕЗ в умовах дії електромагнітних полів завад здійснюється методами теорії кіл. Всі види зв’язків завад (ЗЗ) ділять на ємнісні, індуктивні та кондуктивні.
Спрощена модель ємнісного зв’язку між двома провідниками, один з яких А є джерелом завад, а другий В є приймачем завад, зображена на рис.3.3.
|
|
а) б)
Рис.3.3. Ємнісний зв’язок між провідниками:
а – фізична модель; б – еквівалентна схема
Ємнісний зв'язок здійснюється через ближнє електричне поле напруженості Е. Якщо провідник має напругу
Спрощена модель індуктивного зв’язку між двома провідниками, з яких провідник А є джерелом завад, а провідник В є приймачем завад, зображена на рис.3.4.
Індуктивний зв'язок здійснюється через ближнє магнітне поле напруженості Н, яке виникає при проходженні в провіднику А змінного струму
| |
а) б)
Рис.3.4. Індуктивний зв’язок між провідниками:
а – фізична модель; б – еквівалентна схема
На рис.3.5. зображена узагальнена схема зв’язку завад, з якої видно, що опір зв’язку завад
Рис.3.5. Узагальнена схема зв’язку завад
Коефіцієнт зв’язку по напрузі
де