Смекни!
smekni.com

Локальные сети (стр. 2 из 7)

Между передачами кадров должна выдерживаться специальная пауза длительностью 9,6 мкс. Это время необходимо каждому сетевому адаптеру для обработки принятого кадра. Если корректный MAC кадр адресован другим узлам, после обработки сетевым адаптером он отбрасывается. Если - адресован этому узлу, кадр передается вышестоящим уровням для дальнейшей обработки.

Как законченное сообщение, MAC кадр имеет строго определенную структуру. Передача всегда начинается с преамбулы длиной 7 байт (10101010), затем следует начальный разделитель SFD (10101011), далее - адрес назначения DA (6 байт), адрес источника SA (6 байт), длина поля данных (2 байта), данные (0 - 1500 байт, если поле данных менее 46 байт, оно дополняется до 46 байт для корректного обнаружения коллизий), контрольная сумма CRC- 32. Сетевой адаптер при приеме кадра должен распознавать следующие ошибки: длинный кадр (более 1518 байт), короткий кадр (менее 64 байт), "болтливый" кадр (длинный с неправильной CRC), ошибка выравнивания (не кратно байту), ошибка CRC.

Адрес назначения DA может быть трех типов: уникальный MAC- адрес узла приемника (первый байт 00h или 02h), широковещательный адрес (все элементы FF-FF…), групповой адрес (первый байт 01). Уникальный MAC- адрес определяется производителем сетевого адаптера и назначается комитетом IEEE (2 байта - код производителя, 3 байта - серийный номер). Адрес источника SA всегда уникальный. LLC- кадр целиком помещается в поле данных MAC- кадра. CRC контролирует все поля кадра, начиная с DA.

Максимальная эффективная скорость передачи данных зависит от длины кадра. Для физической скорости 10 Мбит/сек при коротких кадрах она составляет 5,48 Мбит/сек, а при длинных кадрах - 9,76. Очевидно, что это только теоретически достижимая скорость, т.к. такие значения возможны при отсутствии коллизий. При высокой нагрузке на разделяемую среду передачи данных вероятность коллизий существенно повышается, а реальная скорость передачи данных соответствующим образом снижается. Считается, что сети Ethernet эффективно работают при нагрузке до 30%. При большем трафике постоянные коллизии могут практически заблокировать передачу данных.

Коллизии и алгоритмы выхода из коллизий.

Коллизия - одновременная передача сигналов несколькими узлами, обнаруживается специальными детекторами коллизий, содержащимися в сетевых адаптерах каждого узла. Опознавание коллизий производится с помощью контроля уровня сигналов в линии связи. При волновом сопротивлении 50 Ом и выходном токе передатчика 40 мА, уровень нормального сигнала не превышает 1 В. При коллизии, когда сигналы формируются одновременно двумя передатчиками, уровень сигнала достигает 2 В. Детектор коллизий реагирует на сигналы, уровень которых превышает 1,5 В. Отсюда вытекает первое ограничение на длину линии связи (10Base-5 - 500 м, 10Base-2 - 185 м, 10Base-Т - 100 м). В приемниках должны надежно идентифицироваться и обычные сигналы манчестерского кода, и сигналы коллизий. Длина линий связи может быть увеличена только с помощью дополнительных коммуникационных устройств - повторителей и концентраторов (хабов). Следует иметь в виду, что существуют жесткие ограничения и на предельную длину, и на количество коммуникационных устройств, так называемое "правило 5-4-3".

Это правило задает следующие требования к физической топологии:

общее количество кабельных сегментов может быть различным, но допустимы только "древовоидные" структуры связей, между любой парой узлов должен существовать только один путь;

между любой парой узлов максимальное количество кабельных сегментов - 5, максимальное количество хабов - 4, активных сегментов, содержащих хотя бы 1 узел - 3.

Кроме ограничений на длину линий связи из-за ослабления сигналов действуют ограничения, связанные с задержкой сигналов из-за конечной скорости распространения. Эти ограничения являются более существенными. Для надежного распознавания коллизий всеми узлами сети необходимо, чтобы время передачи кадра превышало время двойного оборота PDV. Только в этом случае коллизии будут надежно определяться даже для самых удаленных друг от друга узлов сети. PDV зависит от типа линии связи и от ее длины, а минимальная длина кадра ограничена в стандарте.

При обнаружении коллизии узел должен прервать передачу в любом месте кадра и вместо сигналов манчестерского кода передать jam-последовательность. Все сетевые адаптеры принятые данные просто отбрасывают без обработки. Повторная передача кадра разрешена через время кратное интервалу отсрочки TS=51,2 мкс. Причем интервал времени выбирается случайным образом по следующему правилу:

T = TSx (0-2 n),

где n (номер попытки не более 10)

Таким образом, время задержки для повторной передачи лежит в пределах от 0 до 52,4 мсек. Если после 16 попыток передача не состоялась, на верхний уровень выдается сообщение о невозможности передачи данных.

При увеличении скорости передачи данных, например замена спецификации 10 Base на 100Base, ужесточаются топологические ограничения. В первую очередь это связано с требованиями надежного обнаружения коллизий. Для структуризации сети требуется применение специальных коммуникационных устройств.

Домен коллизий - это сеть, в которой узлы распознают коллизию независимо от того, в какой части сети она произошла. При слишком больших доменах коллизий сеть может стать неэффективной. В этом случае сеть разделяют на несколько доменов коллизий (логических сегментов) применением мостов или коммутаторов. Такая структуризация сети позволяет не только снизить нагрузку на каждый домен, но и смягчить ограничения по предельному числу узлов и максимальной длине линий связи.

2.2 Стандарт 802.5, сети Tokenring

В этих сетях применяют детерминированный метод доступа с логической топологией кольцо. Право на передачу данных узлы в сети получают поочередно, передавая по кольцу специальный служебный кадр - token. Каждый узел, получив token (маркер), может заменить его собственным кадром данных или передать маркер дальше по кольцу. Сигналы в кольце передаются всегда в одном направлении, т.е. поступают от соседнего узла, находящегося выше по кольцу, и передаются другому соседнему узлу, находящемуся ниже по кольцу. Теоретически кольцо может содержать минимум два узла. Переданный кадр должен совершить полный оборот по кольцу и вернуться к отправителю. Только узел-источник может изъять кадр из кольца, все остальные узлы могут только передавать его дальше по кольцу. После оборота по кольцу передаваемый кадр заменяется маркером, который поступает в следующий узел, и т.д.

Спецификации физического уровня определяют скорости передачи данных 4 и 16 Мбит/сек, физическая топология - звезда. Узлы подключатся через специальное коммуникационное устройство - MSAU. MSAU формирует логическое кольцо, обеспечивая передачу сигналов на вход узла (сверху по кольцу) и прием на выходе узла (вниз по кольцу). При неработающем узле обеспечивается передача сигналов в обход узла для сохранения корректности работы. Предусмотрена специальная процедура включения узла в кольцо, и включение узла и выключение приводит к кратковременной потере работоспособности.

В целом, организация работы сети существенно сложнее, чем в сети Ethernet. В сетях с топологией общая шина и вероятностным доступом все узлы обладают равноправным доступом и выполняют одинаковые процедуры. В Tokenring процедуры управления работой существенно сложнее, поэтому функции узлов различны. Основные задачи управления выполняет один узел - активный монитор, все остальные узлы - резервные мониторы. При отключении активного монитора автоматически выполняется процедура назначения нового активного монитора, его функции по заранее определенному алгоритму возлагаются на один из резервных мониторов.

Активный монитор следит за корректностью работы кольца: формирует и отправляет маркер, контролирует движение кадров в кольце, обеспечивает синхронизацию и т.д.

3. Промышленные сети (Fieldbus)

Термин Fieldbus- промышленные сети - это технологии передачи данных, ориентированные на применение в задачах управления техническими объектами. Объектом управления может служить и относительно простой бытовой агрегат, и промышленное технологическое оборудование, и целое производство. Требования, предъявляемые к системам передачи данных, могут быть различными и зачастую весьма противоречивыми. Основой построения промышленных сетей являются процедуры и алгоритмы, которые показали высокую эффективность и гибкость в классических компьютерных сетях. Следует иметь в виду, что технологии телекоммуникационных сетей достаточно просто и полно согласуются с современными требованиями и тенденциями в системах управления. Это постоянно возрастающая "интеллектуализация" всех устройств, необходимость в функциональной гибкости, простота модернизации, работа в реальном масштабе времени, высокая надежность, управляемость и самовосстанавливаемость при нештатных ситуациях, низкие затраты на создание и эксплуатацию.

Естественно, что одного решения на все случаи найти невозможно. В настоящее время применяются и продолжают развиваться несколько сетевых технологий. Это FoundaitionFieldbus, Profibus, CANсети и другие. Первые два протокола содержат по две различные технологии передачи данных: на нижнем уровне сети - система передачи данных низкоскоростная (31,5 кбит/с) для локальных систем управления, на верхнем уровне - Ethernet (100 Мбит/с) для объединения локальных систем в единые АСУ. Протоколы содержат средства организации взаимодействия между этими двумя сетевыми уровнями. В CANсети протоколы определяют только нижний уровень сети, но с большими функциональными возможностями. В то же время нет никаких препятствий для организации взаимодействия с более производительными телекоммуникационными технологиями с помощью средств выходящих за рамки CAN протокола.