3° Отношение энергии люминесценции к энергии, поглощенной в стационарных условиях люминофором от источника, возбуждающего люминесценцию, называется энергетическим выходом люминесценции.
Квантовым выходом фотолюминесценции называется отношение числа фотонов люминесцентного излучения к числу поглощенных фотонов возбуждающего света при фиксированной энергии последнего. Энергетический выход фотолюминесценции возрастает прямо пропорционально длине волны λ поглощаемого излучения, а затем, достигая в некотором интервале при λ ~ λмакс максимального значения, быстро спадает до нуля при дальнейшем увеличении λ (закон Вавилова). С увеличением длины волны возбуждающего света растет число фотонов с энергией hv, содержащихся в данной энергии первичного излучения. Поскольку каждый фотон может вызывать появление кванта hvлюм, то с увеличением длины волны происходит возрастание энергетического выхода фотолюминесценции. Резкое уменьшение энергетического выхода при λ > λмакс объясняется тем, что энергия поглощаемых фотонов становится недостаточной для возбуждения частиц люминофора.
Согласно закону Вавилова квантовый выход фотолюминесценции не зависит от длины волны возбуждающего света в стоксовой области (vвозб > vлюм) и Резко падает в области антистоксова излучения (vвозб < vлюм).
Величины квантового и энергетического выходов сильно зависят от природы люминофора и внешних условий. Это связано с возможностью без излучательных переходов частиц из возбужденного в нормальное состояние (тушение люминесценции). Основную роль в процессах тушения играют столкновения второго рода, в результате которых энергия возбуждения переходит во внутреннюю энергию теплового движения без излучения. Имеет место также резкое уменьшение интенсивности флуоресценции при чрезмерно большой концентрации молекул люминесцирующего вещества (концентрационное тушение). В этом случае из-за сильной связи между частицами невозможно образование центров люминесценции.
4° Интенсивность свечения для спонтанной и метастабильной люминесценции изменяется с течением времени по экспоненциальному закону:
где It – интенсивность свечения в момент времени t, I0 - интенсивность свечения в момент прекращения возбуждения люминесценции, r - средняя продолжительность возбужденного состояния атомов или молекул люминофора. Величина r имеет обычно порядок 10-9 – 10-8 сек. В отсутствие тушащих процессов r слабо зависит от условий и определяется в основном внутримолекулярными процессами.
5° Интенсивность рекомбинационного люминесцентного свечения изменяется с течением времени по гиперболическому закону:
где а и n- постоянные;
величина а лежит в пределах от долей сек-1 до многих тысяч сек-1;
, где I0 - интенсивность рекомбинационной люминесценции в момент ее возбуждения; n заключено в пределах от 1 до 2.ЛИТЕРАТУРА
1. Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп. -Спб.: Машиностроение,2003 -- 696 с.
2. Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие. - Спб.: Машиностроение,2003 -- 272 с.
3. Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника. -М.: Энергия, 2001.