Смекни!
smekni.com

Метод вейвлет-перетворення (стр. 4 из 9)

áv(t), w(t)ñ =

v(t)·w*(t) dt = 0(4.1.2)

завжди може бути, створена система ортонормованих "осей" (базис простору), при цьому будь-який сигнал, що належить цьому простору, може бути представлений у вигляді вагової суми простих складових, проекцій сигналу на ці "осі" - базисних векторів. Значення проекцій визначаються скалярними добутками сигналу з відповідними функціями базисних "осей".

Базис простору може бути утворений будь-якою ортогональною системою функцій. Найбільше застосування в спектральному аналізі одержала система комплексних експонентних функцій. Проекції сигналу на даний базис визначаються виразом:

Sn = (1/T)

s(t) exp(-jn·
·
t) dt, nÎ (-∞, ∞), (4.1.3)

де

=2
/T –
частотний аргумент векторів. При відомих виразах базисних функцій сигнал s(t) однозначно визначається сукупністю коефіцієнтів Sn і може бути абсолютно точно відновлений (реконструйований) по цих коефіцієнтах:

s(t) =

Sn exp(jn·Dw·t).(4.1.4)

Рівняння (4.1.3) і (4.1.4) називають прямим і зворотним перетворенням Фур'є сигналу s(t). Таким чином, будь-яка функція гильбертова простору може бути представлена у вигляді комплексного ряду Фур'є (4.1.4), що називають спектральним представленням сигналу або його Фур'є-образом.

На практиці ряд Фур'є обмежується певною кількістю членів N. Обмеження числа членів ряду значенням N означає апроксимацію нескінченного сигналу N - мірною системою базисних функцій спектра сигналу з певною погрішністю залежно від фактичного спектра сигналу. Ряд Фур'є рівномірно сходиться до s(t) по нормі (4.1.1):

||s(t) -
Sn exp(jn
Dwt)|| = 0.(4.1.5)

Таким чином, ряд Фур'є - це розкладання сигналу s(t) по базисі простору L2(0,T) ортонормированных гармонійних функцій exp(jnDwt) зі зміною частоти, кратним частоті першої гармоніки w1=Dw.. Звідси, ортонормований базис простору L2(0,T) побудований з однієї функції v(t) = exp(jDwt) = cos(Dwt)+j·sin(Dwt)за допомогою масштабного перетворення незалежної змінної так, що vn(t) = v(nt).

Для коефіцієнтів ряду Фур'є справедлива рівність Парсеваля збереження енергії сигналу в різних представленнях:

(1/T)

|s(t)|2 dt =
|Sn|2.
(4.1.6)

Розклад в ряд Фур'є довільної функції y(t) коректно, якщо функція y(t) належить цьому ж простору L2(0,T), тобто квадратично інтегрувальна з кінцевою енергією:

|y(t)|2 dt < ¥ , t Î (0,T), (4.1. 7)

при цьому вона може бути періодично розширена й визначена на всій тимчасовій осі простору R(-¥, ¥) так, що

y(t) = y(t-T), t Î R,

за умови збереження кінцівки енергії в просторі R(-¥, ¥).

З позицій аналізу довільних сигналів і функцій у частотній області й точному відновленні після перетворень можна відзначити ряд недоліків розкладання сигналів у ряди Фур'є, які привели до появи віконного перетворення Фур'є й стимулювали розвиток вейвлетного перетворення. Відзначимо основні з них:

· Обмежена інформативність аналізу нестаціонарних сигналів і практично повна відсутність можливостей аналізу їхніх особливостей (сингулярностей), тому що в частотній області відбувається «розмазування» особливостей сигналів (розривів, сходів, піків і т.п.) по всьому частотному діапазоні спектра.

· Гармонійні базисні функції розкладу не здатні в принципі відображати перепади сигналів з нескінченною крутістю типу прямокутних імпульсів, тому що для цього потрібно нескінченно велика кількість членів ряду. При апроксимації стрибків нелокалізованими в часі базисними функціями необхідно, щоб суперпозиція цих функцій не тільки відновила стрибок, але й знищила один одного за межами стрибка, що робить рівнозначними всі компоненти його спектра. При обмеженні числа членів ряду Фур'є на околицях стрибків і розривів відновленого сигналу виникають осцилляции (явище Гіббса).

· Перетворенням Фур'є відображаються глобальні відомості про частоти досліджуваного сигналу, оскільки базисні функції перетворення визначені на нескінченному тимчасовому інтервалі. ПФ не дає представлення про локальні властивості сигналу при швидких тимчасових змінах його спектрального складу. Так, наприклад, перетворення Фур'є не розрізняє сигнал із сумою двох синусоїд. Перетворення Фур'є в принципі не має можливості аналізувати частотні характеристики сигналу в довільні моменти часу.

4.2 Віконне перетворення Фур'є

Частковим виходом із цієї ситуації є так зване віконне перетворення Фур'є з віконною функцією, що рухається по сигналі, що має компактний носій. Повний часовий інтервал сигналу, особливо при великій його тривалості, розділяється на підінтервали, і перетворення Фур'є виконується послідовно для кожного вікна окремо. Тим самим здійснюється перехід до частотно-тимчасового (частотно-координатному) поданню сигналів і результатом віконного перетворення є сімейство спектрів, яким відображається зміна спектра сигналу по інтервалах зрушення вікна перетворення. Це якоюсь мірою дозволяє виділяти на координатній осі й аналізувати особливості нестаціонарних сигналів. Розмір носія віконної функції w(t) звичайно встановлюється порівнянним з інтервалом стаціонарності сигналу. Власне кажучи, таким перетворенням один нелокалізований базис розбивається на певну кількість базисів, локалізованих у межах функції w(t), що дозволяє представляти результат перетворення у вигляді функції двох змінних - частоти й тимчасового положення вікна. Віконне перетворення виконується відповідно до виразу:

S(w,bk) =

s(t) w(t-bk) exp(-jwt) dt. (4.2.8)

Функція w(t-b) являє собою функцію вікна зрушення перетворення по координаті t, де параметром b задаються фіксовані значення зрушення. При зрушенні вікон з рівномірним кроком bk = kDb. В якості вікна перетворення може використовуватися як найпростіше прямокутне вікно ( w(t)=1 у межах вікна й 0 за його границями), так і спеціальні вагові вікна (Бартлетта, Гаусса, Кайзера та ін.), що забезпечують малі перекручування спектра за рахунок граничних умов вирізки віконних відрізків сигналів і нейтралізуюче явище Гіббса.

4.3 Приклад віконного перетворення

Приклад віконного перетворення для нестаціонарних сигналів на великому рівні шуму наведений на рисунку , наведеного у додатку А. По спектрі сигналу в цілому можна судити про наявність у його складі гармонійних коливань на трьох частотах. Віконне перетворення не тільки підтверджує даний висновок, але й показує конкретну локальність коливань по інтервалі сигналу й співвідношення між амплітудами цих коливань.

Координатна розв'язна здатність віконних перетворень визначається шириною віконної функції й, у силу принципу невизначеності Гейзенберга, обернено пропорційна частотній розв'язній здатності. При ширині віконної функції, рівної b, частотна розв'язна здатність визначається значенням Dw = 2p/b. При необхідній величині частотного дозволу Dw відповідно ширина віконної функції повинна, бути дорівнює b = 2p/Dw. Для віконних перетворень Фур'є ці обмеження є принциповими. При розмірі масиву даних N = 300 і ширині віконної функції Db = 100 частотна розв'язна здатність результатів перетворення зменшується в N/Db = 3 рази в порівнянні з вихідними даними, і графіки Sw(nDwSw) по координаті n для наочного зіставлення із графіком S(nDwS ) побудовано із кроком по частоті DwSw = 3DwS, тобто по точках n = 0, 3, 6, … , N...

4.4 Частотно-часові віконні перетворення

Функція віконних перетворень (4.2.8) може бути, переведена в тривимірний варіант із незалежними змінними й за часом, і по частоті:

S(t,w) =

s(t-t) w(t) exp(-jwt) dt.(4.4.9)

На рисунку, наведеного у додатку Б, наведений приклад обчислення й представлення (модуль правої частини головного діапазону спектра) результатів тривимірної спектрограми при дискретному задані вхідного сигналу sq(n). Сигнал являє собою суму трьох послідовних радіоімпульсів з різними частотами без пауз, з відношенням сигнал/шум, близьким до 1. Віконна функція wi задана в однобічному варіанті з ефективною шириною вікна b @ 34 і повним розміромМ =50. Установлений для результатів крок по частоті Dw = 0.1 трохи вище фактичної розв'язної здатності 2p/M = 0.126.