Особливості корегуючих властивостей СЛК перетворень
2009
Анотація
Метод структурно-логічного кодування (СЛК) інфімумних диз'юнктивних нормальних форм (ІДНФ) булевих функцій базується на використанні природної логічної надмірності змінних послідовностей розгортання покриваючих n-мірних кубів
.Принципова відмінність кодування СЛК від відомих методів кодування як блокових так і безперервних кодів полягає в тому, що необхідність введення додаткової надмірності в інформаційну послідовність при структурно-логічному кодуванні відсутня, оскільки логічні варіанти подання даних у вигляді диз'юнктивно-нормальних форм (ДНФ) мають природну надмірність.
Завдання полягає у тому, щоб визначити основи реалізації природної структурно-логічної надмірності диз'юнктивних нормальних форм представлення даних із метою забезпечення максимальних коригувальних властивостей кодів СЛК.
В даній роботі проведений аналіз основних особливостей коректуючих властивостей структурно-логічних кодів інфімумних диз'юнктивних нормальних форм БФ для каналів з незалежними помилками.
СЛК – структурно-логічне кодування, ДНФ – диз’юнктивна нормальна форма, ІДНФ – інфімумна диз’юнктивна нормальна форма.
Зміст
ВСТУП
1. Коректуючі властивості мінімального інтервалу декодування
2. Визначення ймовірності помилкового декодування ЄКФ
3. Висновок
4. СПИСОК ВИКОРИСТАННОЇ ЛІТЕРАТУРИ
ДОДАТОК
Вступ
Метод структурно-логічного кодування (СЛК) інфімумних диз'юнктивних нормальних форм (ІДНФ) булевих функцій базується на використанні природної логічної надмірності змінних послідовностей розгортання покриваючих n-мірних кубів
[1].Принципова відмінність кодування СЛК від відомих методів кодування як блокових так і безперервних кодів полягає в тому, що необхідність введення додаткової надмірності в інформаційну послідовність при структурно-логічному кодуванні відсутня, оскільки логічні варіанти подання даних у вигляді диз'юнктивно-нормальних форм (ДНФ) мають природну надмірність.
Завдання полягає у тому, щоб визначити основи реалізації природної структурно-логічної надмірності диз'юнктивних нормальних форм представлення даних із метою забезпечення максимальних коригувальних властивостей кодів СЛК.
1. Коректуючі властивості мінімального інтервалу декодування
Структурно-логічні коди (СЛК) використовують природну логічну надлишковість інфимуних диз'юнктивних нормальних форм (ІДНФ) булевих функцій, які є основою побудови кодів СЛК, для виправлення помилок, які виникають при передачі даних по реальним дискретним каналам, окремо по каналам с незалежними помилками. Основною задачею являється встановлення базисних співвідношень між реалізованої кодами СЛК логічної надлишковості і граничним значенням кратності незалежних помилок, що виправляються.
Показано, що в межах мінімального інтервалу декодування (МІД)
-мірного куба , в якості якого приймається грань, тобто підкуб куба. , можливовідновлення будь-якої із чотирьох вершин ,спотвореної помилками кратності
Обов'язковою умовою виправлення помилок в такій скривленій вершині є коректне визначення 3-х останніх із чотирьох вершин МІД.
Таким чином, в межах МІД можливе виправлення будь-якої
- кратної помилки надовжині розрядів вершини куба .Якщо помилка кратності
спотворює одночасно розряди двох сусідніх вершин, то така помилка виправлена бути не може, оскільки порушується обов'язкова умова коректності 3-х вершин МІД при виправленні четвертої вершини, тобто спотвореними стають 2 вершини МІД.Пакетна помилка, окремим випадком якої є
-кратна помилка, починається і закінчується завжди, як і -кратна помилка, помилковим бітом(розрядом). У загальному випадку для пакетної помилки характерна наявність безпомилкових біт у середині пакету помилок, в той час як при
- кратній помилці безпомилкові біти відсутні.Визначимо ймовірність помилки МІД для випадку, коли спотворена більш ніж одна вершина МІД. Нехай ймовірність неправильного прийому одного біта (розряду) для каналу з незалежними помилками при рівномірному їх розподілі складе
.При незалежних помилках ймовірність появи деякого числа спотворених біт в межах п розрядів вершини МІД не залежить від взаємного розташування спотворених біт і визначається тільки числом спотворених біт і вірогідністю помилки
одного біта.Ймовірність
відповідає ймовірності 1-кратної помилки. Двократна помилка визначається наявністю 2-х помилкових біт одночасно що відповідає ймовірності (2)= = .Ймовірність
-кратної помилки визначається виразом = , (1)де
- розрядність кожноївершини МІД, визначеної в -мірному кубі .З іншої сторони, ймовірність правильного прийому одного біта складе
(1)=(1- ), а ймовірність правильного прийому двох біт – (2)=(1- ) .Тоді ймовірність правильного прийому
біт складе =(1- ) (2)Розглянемо варіанти помилкового прийому двох сусідніх
-розрядних вершин МІД на прикладі 4-х розрядних вершин. Якщо -кратна помилка перевищує розрядність хоча б на одиницю ( = +1), то така помилка в межах МІД не може бути виправлена, оскільки помилками будуть зачеплені 2 сусідніх вершини, як це показано на рис. 3.3 (5) (4) (4)