Ці оцінки не враховують реального навколишнього середовища, пов’язаного з можливою наявністю інших ППО (наприклад, декількох суден, що рухаються в безпосередній близькості від досліджуваного об'єкта), наявністю морської поверхні, гідрометеорів.
На основі запропонованого підходу вирішені задачі оптимальних оцінок параметрів просторово-протяжних об'єктів і поверхонь для тих випадків, коли: а) моделі поверхонь і моделі сигналів функціонально задані своїми математичними зв’язками щодо всіх невідомих параметрів об'єктів; б) моделі задані з точністю до невідомих несуттєвих параметрів (інтенсивності й фази) із заданим їхнім імовірнісним розподілом; в) корисні сигнали є випадковими процесами.
Оптимальний алгоритм оцінки комплексного коефіцієнта розсіювання отримано в рамках методу максимальної правдоподібності з умови максимуму функціонала правдоподібності з урахуванням додаткової апріорної інформації про просторову протяжність об'єкта. Вирішення задачі на умовний екстремум зводиться до рішення задачі на безумовний екстремум, поставленої для функціонала
де
функціонал правдоподібності;
При пошуку екстремуму функціонала (4) необхідно мінімізувати функціонал
Протяжність розподіленого об'єкта враховується такою умовою: відношення квадрата дисперсії вхідного сигналу за відсутності сигналу від об’єкта на передбачуваній ділянці протяжності до суми квадратів дисперсії вхідного сигналу без
Просторова протяжність об’єкта враховується введенням штрафного функціонала
де
Оптимальна оцінка комплексного коефіцієнта розсіювання визначається вирішенням зворотної задачі
Отже, при обробці ехо-сигналів, відбитих від ППО, необхідно виконувати такі три основні операції: 1 – узгоджену просторово-часову обробку сигналу; 2 – порогову обробку радіолокаційних сигналів (показано, що доцільно використовувати вейвлет-перетворювания, що дозволяють виявити структуру й розробити основні підходи при вирішенні задач локалізації розподіленого об'єкта); 3 – формування метрики об'єкта (оцінка радіолокаційного центра і зовнішніх розмірів об'єкта).
На основі отриманих у другому розділі результатів запропонована структурна схема обробки сигналу, відбитого від ППО на фоні нестаціонарних завад (рис. 2).
У третьому розділі наведені результати моделювання процесу виявлення і оцінки координат просторово-протяжних об'єктів на фоні відбиттів від випадкових неоднорідних поверхонь. Проведено моделювання процесу оцінки питомих ЕПР поверхні та просторово-протяжного об'єкта.
Прийнятий сигнал
Сигнал, відбитий від морської поверхні та гідрометеорів, має вигляд
де
При моделюванні передбачалося, що поверхня складається із сукупності незалежних відбивачів із випадковими коефіцієнтами відбиття, розміри відбивачів значно менше розміру елемента роздільної здатності РЛС.
Кореляційна функція суми незалежних випадкових процесів
Зображення поверхні ППО за наявності адитивної завади
Кореляційна функція пасивних завад та адитивного шуму відповідно визначаються виразами
Результат погодженої обробки прийнятого РЛЗ відповідно до алгоритму (рис. 2) за наявності заважаючих відбиттів від морської поверхні наведено на рис. 4 - 5.
На етапі первинної обробки здійснюється узгоджена фільтрація прийнятого сигналу з наступним формуванням модуля
На етапі вторинної обробки здійснюється згладжування РЛЗ таким способами: підсумовування незалежних РЛЗ, вінерівська і калманівська фільтрація, гомоморфне перетворення РЛЗ, геометрична і локальна фільтрація. Перераховані способи мають істотні недоліки: погіршення просторової роздільної здатності РЛЗ, розмиття границь областей зображення з різною ЕПР. Поділ на первинну й вторинну обробку приводить до часткової оптимізації всієї процедури обробки сигналу. При цьому не враховуються локальні особливості нестаціонарних сигналів, відбитих від складних просторово-протяжних об'єктів.
Особливістю розробленого алгоритму (рис. 2) є те, що в ньому оптимізаційна задача обробки радіолокаційних сигналів вирішена без розбивання на етапи первинної й вторинної обробки.
За результатами статистичного моделювання процесів формування й інтерпретації РЛЗ встановлено, що застосування розроблених оптимальних алгоритмів обробки сигналів з їх адаптивним вибілюванням і врахуванням апріорної інформації при первинній обробці підвищує ймовірнісні
Четвертий розділ присвячений порівнянню методів визначення координат радіолокаційного центру просторово-протяжного об'єкта. При визначенні місцезнаходження протяжних об'єктів можливими джерелами помилок є кінцеві розміри реальних об'єктів.