Анализ этих методов применительно к тепловизионным системам на базе микроболометрических матриц показывает, что они нуждаются в существенной доработке. Так, применительно к тепловизионным системам с микроболометрами наиболее часто используемая двухточечная калибровка не обеспечивает требуемого качества изображения во всем наблюдаемом диапазоне температур. При компенсации шума при помощи пространственной фильтрации происходит размытие контрастных границ объектов, что снижает пространственное разрешение, а как следствие, снижает расстояние обнаружения и распознавания. Применяя линейный фильтр дифференцирования можно повысить контраст границ объектов, что приводит к повышению дальности обнаружения и распознавания. Побочным эффектом является повышение уровня шума и изменение внешнего вида изображения (выделение контуров). Используя линейный фильтр дифференцирования, можно построить алгоритм, позволяющий производить сравнительную оценку качества фокусировки объектива. Линейный метод автоматической регулировки уровней яркости, применяемый в тепловизионных системах, нуждается в доработке с целью увеличения контраста изображений в широком температурном диапазоне.
Во второй главе рассматриваются пути совершенствования методов цифровой обработки изображений в тепловизионных системах на основе микроболометрических матриц.
Экспериментально было показано, что зависимость сигнала от температуры наблюдаемого объекта не является линейной, но достаточно хорошо описывается полиномом второго порядка. Дальнейшее увеличение порядка полинома не приводит к существенному снижению ошибки приближения. Поправочные коэффициенты определяются путем калибровки по трем температурам объекта для каждой из рабочих температур матрицы и записываются в память прибора.
Предлагается метод замещения дефектного элемента (пиксела), основанного на применении в блоке цифровой обработки сигнала (рис. 1) фильтра размытия, используемого в ряде других алгоритмов (фильтрация шумов, оконтуривание, автофокусировка). Под линейным фильтром понимается следующая операция
где
В работе использовалась следующая маска:
Дефектные элементы исключаются из рассмотрения. В местах, соответствующих дефектным элементам, весовые коэффициенты фильтра
при этом сумма всех элементов должна быть равной единице, для этого проводится нормировка:
При применении пространственного фильтра размытия для снижения влияния шума резкие переходы яркостей изображения становятся более гладкими, а мелкие детали практически исчезают. Этого можно избежать, проведя селекцию контрастных участков, для которых производится более слабое размытие или оно не производится вовсе. Для селекции применяется фильтр дифференцирования. Нижняя граница определяется из расчета вероятности принадлежности к равномерному участку, которая должна быть больше определенной граничной величины (например
где весовой коэффициент степени размытия
где
Здесь опять используется маска размытия
Для реализации дифференциального фильтра предлагается использовать лапласиан, построенный на разности исходного изображения и фильтра размытия, применяемого для подавления шумов и замещения дефектных элементов матрицы.
Построение адаптивной временной фильтрации производится аналогичным образом:
где
При работе многих тепловизионных приборов было замечено значительное преобладание коррелированного шума по столбцам и строкам, имеющего вид полос, над прочими шумами. Указанные выше фильтры не способны удалить эти полосы без существенной потери качества изображения. В диссертации предлагается метод компенсации влияния данного вида шума на изображение, который иллюстрирован алгоритмом компенсации горизонтальных полос. Алгоритмы, производящие компенсацию шумов по столбцам или по строкам, выполняются по отдельности. Разработанный метод базируется на предположении, что изменение изображения под действием шума происходит для всей полосы (столбца или строки) по общему закону