где
В качестве функции
Параметры преобразования
Предполагаемое изображение
На основе анализа линейного и гистограммного методов регулировки уровней яркости предлагается новый метод, компенсирующим основные недостатки каждого из них. При этом простота метода, по сравнению с гистограммным методом, сохраняется. Он позволяет уменьшить влияние шума и снизить влияние больших однотонных зон, обеспечивая контраст между двумя объектами с различной яркостью. Это достигается введением верхних и нижних ограничений контраста. На основе этого предложения был разработан быстрый алгоритм, позволяющий реализовать данный метод со скоростью, сравнимой со скоростью реализации гистограммного метода. Новый алгоритм основан на сборе гистограммы от гистограммы уровней сигнала по одному кадру. Полученное изображение для восприятия человеком лучше или, в крайнем случае, не хуже, чем при использовании линейного или гистограммного методов.
При масштабировании, повороте и прочих аффинных преобразованиях изображения широко применяются различные интерполяционные функции. При масштабировании в нецелое число раз видеопоследовательности, имеющей высокий уровень шума, появляется «сетка» чередующихся зон с высоким и низким уровнями шума. Различия между этими двумя зонами могут быть незначительными, однако в связи с периодичностью и отсутствием передвижения этих зон при движении сцены эта «сетка» хорошо различима и может отвлекать внимание оператора. Этот эффект возникает из-за особенностей интерполяции при масштабировании и повороте. Переход от линейной функции интерполяции к кубической не устраняет этот эффект. В диссертации предлагается метод интерполяции, который осуществляется путем вычисления взвешенного среднего (с динамически изменяемыми весовыми коэффициентами):
где
где
Поскольку повысить резкость в размытых интерполяцией областях мы не можем, то, соответственно, для равномерности дисперсии шума искусственно «размоем» изображение в областях, не подверженных интерполяционному размытию. Поскольку размытие при интерполяции не велико, то и дополнительное местное размытие не должно сильно повлиять на изображение. Такое незначительное размытие может уменьшить влияние шумов, так как его можно рассматривать как низкочастотный фильтр. В работе представлено два примера построения подобных нелинейных фильтров.
Поиск пространственного взаимного рассогласования двух изображений является одной из основных частей алгоритмов геометрической стабилизации изображения, построения панорамного изображения, совмещения изображений. В работе предложен метод, рассчитанный для работы при произвольном угле взаимного поворота изображений.
Наиболее простой способ нахождения параметров поворота, смещений и масштабирования заключается в переборе некоторых возможных их сочетаний. Этот подход очень затратен по времени. Статистический анализ по столбцам и строкам позволяет оптимизировать только работу со смещениями и масштабированием, но работает нестабильно при движении и требует проверки ответа. Для каждого угла возможного угла поворота необходимо проводить всю процедуру заново. Такой метод пригоден для работы с малыми углами отклонения. При больших углах поворота он становится трудоемок.
Предлагается использовать значения сигналов и статистические моменты, собранные по кольцу (группе окружностей) с радиусами
С кольцом
математическое ожидание значений яркости внутри кольца