Смекни!
smekni.com

Методы исследования нелинейных систем (стр. 2 из 4)


где:

– произвольные функции.

Чтобы получить фазовый портрет исключим время:

. (16)

Пусть

, при этом
– это уравнение линии в плоскости (x 0 y). Каждому значению константы с соответствует некоторая линия, обладающая следующим свойством: в каждой точке линии
, т.е. если фазовая траектория пересекает изоклину, то она имеет постоянный наклон рис. 10.


y

Рис. 10

Если провести достаточное число таких линий с соответствующими наклонами, то можно построить фазовый портрет системы. При этом точность зависит от числа изоклин. Направление движения определяется по правилу: если производная

, x >0, то движение такое, что x возрастает.

5. Построение фазового портрета нелинейной системы

Рассмотрим релейную следящую систему, схема которой приведена на рис. 11.



+

x1 НЭ У Uпит Д ТГ P U0

-

x

Рис. 11

Если a¹b на вход НЭ с релейной характеристикой (рис. 12) подается сигнал

При этом: b – угол поворота задающей оси; a – угол поворота отрабатывающего потенциометра.

z

– a2 – a1

0 a1 a2 x1

Рис. 12

Вследствие этого на двигатель подается напряжение ±

, двигатель вращается в определенном направлении в соответствии с полярностью подаваемого напряжения до тех пор, пока оно не станет равным нулю.

Для улучшения качества переходного процесса в систему может быть включена отрицательная обратная связь по скорости двигателя с помощью тахогенератора (ТГ).

Запишем уравнения элементов системы. Для двигателя постоянного тока с независимым возбуждением

(17)

Так как поток возбуждения

= const, то
. Допустим, момент нагрузки мал, при этом
=0.

Передаточную функцию для якорной цепи K1(p) можно получить из ее дифференциального уравнения

(18)

Пусть

Для редуктора и угла поворота вала двигателя

(19)

Для тахогенератора

. (20)

На основании функциональной схемы и полученных передаточных функций элементов системы составляем структурную схему рис. 13


Для построения фазового портрета необходимо записать систему дифференциальных уравнений.

Рассмотрим свободное движение системы (b=0) при этом x = a.

Дифференциальное уравнение нелинейной системы имеет вид

(21)

Представим уравнение в виде системы уравнений:

(22)

Построим фазовый портрет. Для простоты построения фазового портрета делаем некоторые упрощения:

1) Пусть обратная связь по скорости –

отсутствует (К = 0).

2) Характеристика нелинейного элемента однозначна (рис. 14).

При этом:

(23)

С учетом принятых допущений система уравнений упрощается.

(24)