Построим характеристику для каждой зоны.
Пусть – a £ x £ a, ¦(x) = 0.
При этом исходная система имеет вид:
(25)Решение этого уравнения имеет вид
, т.е. наклон фазовых траекторий всюду постоянный (отрицательный).Определим равновесное состояние системы из условия:
Это условие выполняется при y = 0, т.е. точка вырождается в прямую линию y = 0 на интервале [– а, а]. Фазовые траектории на участке – а< x < a представляют собой прямые с коэффициентом наклона -1/Т1 при различных значениях начальных условий.
На прямых линиях проставляем стрелки таким образом, чтобы конечное движение стремилось к началу координат.
Пусть х > a,
. При этом исходная система нелинейных уравнений имеет вид (27)где ci - семейство изоклин, которое представляет собой прямые параллельные оси х, т.е.
, где определяется из выражения для . (28)Таким образом
. (29)Задаваясь значениями
, строим семейство изоклин. Определяем углы пересечения изоклин фазовыми траекториями.Так как
. Например, если , то a = 90°.Пусть х < – a,
. Построение выполняем аналогично, так как знак изменился, то будут другие углы пересечений изоклин фазовой траекторией. Фазовый портрет системы приведен на рис. 15.Рис. 14 Рис. 15
Снимем упрощение К = 0, т.е. рассмотрим влияние отрицательной обратной связи по скорости двигателя на характер фазовой траектории.
При этом уравнения имеют вид:
(30)Пусть
, при этом переключение будет происходить при условии (а не условии х = а), это уравнение линии (рис. 16) . (31)При этом количество перерегулирований уменьшается; можно подобрать такой наклон, при котором нет переколебаний.
Рассмотрим фазовый портрет без ограничений. В системе без ограничений фазовый портрет можно представить на трехлистной поверхности с наклонными гранями (рис. 17.) При этом лист 2 соответствует зоне нечувствительности z=0, лист 1 соответствует отрицательным значениям z, а лист 3 положительным. Вследствие гистерезиса имеет место частичное наложение листов.
Рис. 16 Рис. 17
Исследуем систему. Исследуем влияние отрицательной обратной связи по скорости двигателя (т.е. влияние величины – К). Пусть значение К увеличивается, при этом наклон прямых уменьшается, и может получиться, что срез будет более пологим чем наклон характеристики в средней части. Это приводит к частым переключениям. Такой режим называется скользящим. Если зона
очень узкая, то движение как бы соскальзывает к установившемуся режиму (рис. 18а).Если изменить знак обратной связи с отрицательной связи на положительную связь, то при этом изменится наклон линий переключения, и количество колебаний будет увеличиваться, система будет "раскачиваться". Система работает, как генератор и может появиться либо замкнутый цикл – автоколебания, либо расходящийся переходный процесс (рис. 18б).
а) б)
Рис. 18
Достоинства метода: простота и наглядность для систем 2-го порядка; пригодность для любого типа нелинейных элементов.
Недостатки: метод громоздкий для систем выше 2-го порядка, поэтому при n >2 не применяется.
Рассмотрим несколько примеров построения фазовых портретов нелинейных систем управления
Пример 1. Пусть задана система, состоящая из линейной части и нелинейного элемента (усилитель с ограничением по модулю) (рис. 19). Это кусочно-линейная система, так как на отдельных участках она ведет себя как линейная (в области) – а, +а[). Допустим в области (] – а, +а[) коэффициент усиления большой и система неустойчива а фазовый портрет характеризуется особой точкой "неустойчивый фокус". За пределами области коэффициент усиления мал, допустим, что при этом система устойчива и характеризуется особой точкой – "устойчивый фокус".
При больших отклонениях x > |a| общий коэффициент усиления системы мал, система устойчива, процесс затухает.
При малых отклонениях общий коэффициент усиления системы большой – процесс расходится к замкнутой траектории, которая характеризует наличие устойчивых автоколебаний (рис. 20).
В этой системе три типа движений: автоколебания; сходящиеся колебания; расходящиеся колебания
Пример 2. Пусть задана система с характеристикой нелинейного звена типа "зона нечувствительности" (рис. 21). Необходимо построить фазовый
портрет данной системы, определить наличие предельных циклов и проанализировать их устойчивость.
Рис. 21 Рис. 22
Пусть в области [-b, +b] система устойчива, при этом коэффициент усиления – К мал, переходный процесс затухает, особая точка "устойчивый фокус" вне области К – большой, переходный процесс расходится (рис. 22). Эта система имеет неустойчивый предельный цикл, т.е. автоколебания неустойчивы.
Для более сложных нелинейных элементов может быть несколько предельных циклов.
Рис. 23
Решение: Исходную схему можно представить в виде (рис. 24).
1) При – a < x < +a f(x) = 0, а система уравнений имеет вид
Фазовый портрет в этой области представляет семейство прямых с коэффициентом к = -1, а состояние равновесия устойчиво по Ляпунову и представляет отрезок оси y = 0 на интервале – a <x < +a (рис 25).
2) При x > +a f(x) = x – a, а система уравнений имеет вид
Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле
и угол пересечения фазовой траекторией изоклины по формуле a = arctg c, результаты приведены в таблицах 1 и 2.Сi | 0 | 1 | 2 | 3 | -1/2 | -2 | -3 | ¥ |
k | -1 | -1/2 | -1/3 | -1/4 | -2 | 1 | 1/2 | 0 |
Ci | 0 | ±1 | ±1 | ±1 | ±1 | ±¥ |
a | 0 | ±450 | ±630 | ±710 | ±800 | ±900 |
3) При x < – a f(x) = x + a, а система уравнений имеет вид
Левая часть фазового портрета строится аналогично правой.
Для каждого сi определимугловой коэффициент наклона изоклины – к по формуле
и угол пересечения фазовой траекторией изоклины по формуле a = arctg c.