7. Температурный диапазон работы –25…+55°С.
8. Срабатывание сигнализации и выдача сигнала о тревоге в линию передачи при нарушении любых блокировок, при механическом воздействии и при проникновении в салон должно происходить без задержек.
8. В системе должна быть предусмотрена индикация режима охраны, включенного состояния или индикация перехода системы из одного состояния в другое.
Требования к приемо-передающим устройствам системы.
1. В системе должна быть применена система кодирования радиосигнала, обеспечивающая не менее 106 возможных комбинаций индивидуальных номеров.
2. Входящие в систему радиомодули должны соответствовать Временному Европейскому Стандарту Телекоммуникаций (I–ETS 300 220) для класса 1а:
несущая частота 433,92 МГц;
чувствительность 0,5 мкВ при отношении сигнал/шум 20дБ;
максимальная эффективная излучаемая мощность 10 мВт;
уровень внеполосных излучений передатчика 4 нВт.
При дальнейшем проектировании необходимо руководствоваться техническими требованиями и характеристиками, предъявляемыми к системе.
3.РАЗРАБОТКА АРХИТЕКТУРЫ
3.1 Разработка структурной схемы
В результате анализа существующих технических решений и приняв во внимание выдвинутые требования к проектируемой системе была разработана структурная электрическая схема (рис.3.1)
Структурная электрическая схема состоит из двух подсистем: подсистема, устанавливаемая на охраняемом автомобиле (рис.3.1а), и подсистема, находящаяся у пользователя (рис.3.1б).
Рис.3.1а. Структурная схема бортовой подсистемы.
Рис.3.1б. Структурная схема подсистемы носимой.
Первая подсистема содержит центральный блок, датчики открывания дверей, ультразвуковой датчик движения, датчик ударов, сирену, приемник, передатчик, антенну, пульт управления, дешифратор динамического кода. Центральный блок контролирует работу периферийных устройств. На него постоянно поступает информация о состоянии датчиков открывания дверей, датчика ударов, датчика проникновения. Режим работы центрального блока можно задавать пультом управления, находящимся в салоне автомобиля или дистанционно, принятием радиосигналов с подсистемы пользователя с использованием радиоприёмного устройства. По желанию пользователя охранная система производит блокировку дверей и системы зажигания. В случае проникновения или по желанию пользователя центральный блок управляет сигналами сирены и габаритными огнями автомобиля, а так же управляет выводом информации через радиоканал с помощью передатчика. Питание подсистемы автомобиля производится от бортовой сети автомобиля. Подача сигналов тревоги осуществляется с помощью сирены, миганием габаритных огней и через радиопередающее устройство. Радиоприёмное и радиопередающее устройство работают на одну антенну.
Вторая подсистема (пользователя) с помощью устройства управления осуществляет связь с аппаратурой автомобиля через радиопередающее устройство с использованием клавиатуры. Питание данной подсистемы производится от портативного источника.
Две подсистемы, объединенные с использованием радиоканала, образуют радиосистему автономной охранной сигнализации автомобиля.
При работе шифратора и дешифратора динамического кода должна осуществляться их синхронизация. Она происходит следующим образом. На стадии разработки в кодер заносится информация: серийный номер передатчика, код производителя. На основе этих данных по некоторому алгоритму вычисляется ключ шифрования. Чтобы шифратор и дешифратор могли работать вместе, дешифратор должен сначала узнать и сохранить следующую информацию из шифратора в защищенной EEPROM:
- серийный номер передатчика;
- ключ шифрования;
- текущее значение счетчика синхронизации;
- код производителя.
Всего в дешифраторе семь слотов памяти, поэтому он может запомнить семь шифраторов.
Схема формирования кода в шифраторе показана на рис.3.2.
Рис.3.2. Схема формирования кода в шифраторе.
Схема процесса дешифрации показана на Рис.3.3.
При приеме дешифратором кода вначале производится проверка на соответствие серийного номера шифратора. Если хоть в одном слоте памяти хранится принятый серийный номер, то шифратор считается опознанным. Дальше используя полученный динамический код и ключ шифрования, сохраненный в слоте памяти, вычисляется переданное синхрочисло. Затем оно сравнивается с сохраненным в памяти синхрочислом.
Рис.3.3. Схема процесса дешифрации.
Далее возможны следующие варианты:
- Если полученное декодированное синхрочисло попадает в текущее окно кодов 1 (рис.3.4.), то оно сохраняется и команда выполняется;
- Если полученное декодированное синхрочисло вышло за предел текущего окна кодов 1, но внутри блока открытых кодов 2, то оно временно сохраняется и декодер ждет следующего синхрочисла. Если две величины последовательны, то принимается, что счетчик синхронизации шифратора только что вышел из текущего окна кодов 1, но теперь снова там и новое синхрочисло (второе) сохраняется и выполняется команда;
- Если шифратор каким-то образом вышел из блока открытых кодов 2, то его надо перезапомнить.
Рис.3.4. Окно кодов.
3.2 Форматы сообщений
В режиме «Тревога» радиопередающее устройство аппаратуры автомобиля излучает периодическую последовательность, содержащую четыре байта адреса (два байта для идентификации цифрового регистрационного номера машины в двоично-десятичном коде и по одному байту на каждую из двух букв в номере машины) и байт проверочного слова (двоичная сумма байтов адреса и байта состояния по модулю 256). Каждый байт начинается стартовым битом и заканчивается стоп–битом. Таким образом, длина сообщения составляет 50 бит информации.
При передаче ключа для выезда/въезда на охраняемую автостоянку передаваемая последовательность содержит три байта личного кода автомобиля и один проверочный байт (двоичная сумма байтов личного кода по модулю 256). Каждый байт также начинается стартовым битом и заканчивается стоп-битом. Таким образом, длина сообщения составляет 40 бит информации.
Для снятия/постановки на охрану, включения режима «Anti-Hi-Jack» и режима «Паника» с носимой подсистемы передается кодовая последовательность.
Рис.3.5. Формат кодовой посылки
Так как в разрабатываемой системе применяется технология динамического кодирования, основанная на использовании специализированных кодера и декодера HCS300 и HCS500 фирмы Microchip, то формат передаваемого сообщения будет определятся данными микросхемами. Структура кодовой посылки изображена на рис.3.5.
Кодовая посылка начинается передачей преамбулы, состоящей из 12 импульсов длительностью 9,2 мс. Далее следует заголовок длительностью 4 мс в котором импульсов нет. Затем передается кодированная часть сообщения, состоящая из 32 бит, длительностью 38,4 мс и фиксированная часть сообщения, состоящая из 34 бит, длительностью 40,8 мс. Завершает кодовую посылку защитный промежуток длительностью 15,6 мс. В результате длительность всей кодовой посылки составляет 108 мс.
Формат передаваемого сообщения показан на рис.3.6.
Рис.3.6. Формат сообщения.
Сообщение состоит из фиксированных данных и шифрованных данных. Фиксированные данные состоят в свою очередь из бита снижения напряжения питания брелка, бита статуса повтора, 4-битного кода клавиши и 28-битного серийного номера. Шифрованные данные несут информацию о коде клавиши (4 бита), о переполнении счетчика синхронизации (2 бита), о дискриминационной величине (10 бит) и текущем значении счетчика синхронизации (16 бит). Эти данные получаются в результате действия алгоритма шифрования KEELOQ.
3.3 Протокол обмена
Передающий радиомодуль может передавать цифровую информацию с максимальной частотой 4800 бит/сек. Максимальная, входящая в эту границу, скорость передачи последовательного асинхронного передатчика на PIC16С73А составляет 2400 бит/сек., следовательно, возьмем скорость передачи информации равную 2400 бит/сек.
При подаче тревожного сигнала выход в эфир осуществляется с учётом анализа наличия несущей в эфире. После освобождения эфира в течение времени передачи одного байта (при скорости передачи информации 2400 бит/сек.) могут начинать выходить в эфир сообщения с автомобилей о тревоге (рис.3.7).
Рис.3.7. Анализ несущей в эфире.
При их отсутствии в течение следующего байта могут начинать выходить в эфир информационные посылки с подсистем пользователя (пультов управления). Если в течение этих двух байтов в эфир никто не выходил, то через восемь байтов начинается контрольная посылка от очередного автомобиля. В противоположном случае (наличие начала сообщения в течение одного из двух контрольных байтов или следующих восьми байтов) алгоритм начинается заново после окончания сообщения, но контрольная посылка при этом выйдет уже через семь байтов и шесть бит, т. е. сдвинется влево на два бита. Это необходимо для приоритетного занятия очереди выхода в эфир, т. к. в данный момент должна была выйти в эфир информация от следующей машины.
Таким образом, сдвигая очередные информационные посылки от автомобилей на 2n битов влево (где n – число раз занятого эфира) в системе сохраняется очерёдность опроса автомобилей. Очевидно, что число невыходов в эфир не может быть больше 32-х раз.