Смекни!
smekni.com

Налагодження пристроїв релейного захисту та автоматики (стр. 1 из 6)

Національний університет "Львівська політехніка"

Інститут енергетики та систем керування

Конспект лекцій з дисципліни

"НАЛАГОДЖЕННЯ ПРИСТРОЇВ РЕЛЕЙНОГО ЗАХИСТУ ТА АВТОМАТИКИ"

Підготував доцент кафедри

"Електричні системи та мережі"

Кідиба В.П.

Львів – 2010

ЦИФРОВІ ПРИСТРОЇ ЗАХИСТУ ТА АВТОМАТИКИ

1. Загальна характеристика цифрових пристроїв захисту та автоматики

Останніми роками в енергосистемах України широко впрваджуються пристрої релейного захисту, виконані на цифрових принципах. За кордоном такі пристрої впроваджуються в експлуатацію вже на протязі більше двох десятків років. Тому не дивно, що закордонні фірми, які займаються розробкою цифрових пристроїв релейного захисту та автоматики, мають суттєву перевагу у порівнянні з вітчизняними виробниками подібної техніки.

Найбільш відомими зарубіжними фірмами в області розробок цифрових пристроїв релейного захисту та автоматики є ABB, SIEMENS, ALSTOM, GENERALELECTRIC.

В літературі досить часто цифрові пристрої ще називать мікропроцесорними. На наш погляд це не зовсім вірно. Мікропроцесор – це є один з основних елементів багатьох пристроїв релейного захисту та автоматики. Але є пристрої, які виконані на основі мікроконтролерів. Є більш складні пристрої релейного захисту, автоматики, об‘єднані в спільну інформаційну мережу, для організації якої використовують комп’ютери з потужними процесорами. Спільним для всіх цих технічних елементів є використання цифрових принципів їхнього функціювання. Тому доцільно всі ці пристрої називати цифровими пристроями релейного захисту.

У порівнянні з традиційними електромеханічними та напівпровідникковими пристроями релейного захисту цифрові пристрої мають ряд суттєвих переваг, що робить їх застосування в енергосистемах на даний час практично безальтернативним. Основними з них є:

-більш висока точність відтворення заданих характеристик функціонуванняпристрою. В цілому, апаратна похибка цифрових захистів може досягати до 2%. Так, один з основних параметрів вимірювальних органів захисту – коефіцієнт повернення – може мати значення 0,99. Досягненя такого значення коефіцієнта на напівпровідникових та електромеханічних реле потребує складних технічних рішень. Прикладом такого реле є захист від симетричного перевантаження статора генератора, виконаного на спеціальному реле РТВК. Це реле виконано на напівпровідникових елементах і дозволяє збільшити коефіцієнт порвернення до 0,99. Про те воно є дорогим та громіздким. Висока точність відтворення характеристик захистів дозволяє змінити деякі параметри узгодження між захистами суміжних елементів електричної мережі. Наприклад, можна зменшити ступінь селективності для максимальних струмових захистів суміжних елементів мережі, що в свою чергу зменшить час їх спрацювання і, як наслідок, час ліквідації аварії;

· отримання характеристик будь-якої складності. Це особливо є актуальним для дистанційних захистів, вимірні органи яких можуть мати які завгодно характеристики і враховувати будь-які особливості режимів, що можуть виникати в енергосистемі. При цьому зміна форми характеристик не потребує ніяких додаткових технічних переробок – вона змінюється на алгоритмічному рівні;

· запам‘ятовування координат режиму під час спрацювання цифрового пристрою. Практично всі цифрові захисти запам‘ятовують координати режиму аварійного та доаварійного режиму, що дає змогу експлуатаційному персоналу здійснювати глибокий аналіз аварійних ситуацій, визначати причини аварії і на основі цього при необхідності уточнювати та змінювати характеристики захистів та автоматики;

· можливість змінювати конфігурацію пристрою. В поцесі розвитку мережі може виникнути необхідність в зміні характеристик пристроїв захисту – змінити уставки, ввести або вивести з роботи деякі функції тощо. Такі зміни не потребують ніяких технічних витрат, тому що вони здійснюються на програмному рівні;

· універсальність. Ця особливість цифрових пристроїв в більшій мірі стосується розробників, а не експлуатацію. Використовуючи універсальний процесорний модуль, відкоректувавши вхідні та вихідні кола, змінюючи алгоритм функціювання, можна створювати різні типи захистів та автоматики;

· значно менші габарити та менші затрати електротехнічних матеріалів. Один невеликий за розміром цифровий пристрій може замінити цілу групу складних реле, виконаних на напівпрвідниках або електромеханічних елементах. Наприклад, напівпровідниковий дистанційний захист типу ПДЕ від міжфазних к.з. має дев‘ять вимірних дистанційних органів, кожен з яких виконаний у вигляді окремого модуля. В цифровому ж пристрої характеристики всіх цих вимірних органів задаються на програмному рівні і реалізуються віртуально в процесорі;

· можливість самодіагностики. Алгоритми функціонування сучасних цифрових пристроїв захисту, особливо складних, обов‘язково включають функцію самодіагностики, яка періодично здійснює контроль справності всіх складових пристрою – вхідних кіл, вихідних кіл, цифрових елементів і при виявленні несправностей робота пристрою блокується з автоматичним повідомленням про це черговому персоналу. Традиційні ж пристрої релейного захисту, особливо електромеханічні, такої можливості не мають і є багато випадків в експлуатації, коли при виникненні аварії ці пристрої не спрацьовували і після аналізу виявлялось, що вони були несправними, про що оперативний персонал і не здогадувався;

· менше споживання енергії для функціювання, що суттєво зменшує потужність джерел енергії оперативного струму;

· менше навантаження та первинні вимірювальні трансформатори струму та напруги. Потужність споживання сучасних цифрових пристроїв релейного захисту складає до 0,5 ВА. Це дає змогу під‘єднувати до первинних вимірювальних трансформаторів струму та напруги більшу кількість пристроїв релейного захисту та автоматики, забезпечуючи при цьому роботу трансформаторів струму та напруги в заданому класі точності;

· простота в експлуатації. Під час проведення планових профілактичних робіт немає необхідності перевіряти характеристики окремих складових елементів, як в традиційних пристроях релейного захисту, тому що фізично їх немає, їхні харакетристики реалізовані програмно. Тому перевіряються лише загальні характеристики функкціювання. Це суттєво зменшує номенклатуру робіт і відповідно час перевірки пристроїв.

2. Структурна схема цифрового пристрою РЗА

Незалежно від призначення цифрових пристроїв релейного захисту – струмові, дистанційні тощо – вони мають схожу структуру, яка наведена на рис. 2.1.

Рис.2.1. Структурна схема цифрового захисту

Основним елементом цифрового захисту є процесор, на якому реалізований алгоритм роботи конкретного захисту. В залежності від призначення пристрою та фірми виробника може бути застосований один процесор або декілька. Так, фірма АВВ надає перевагу багатопроцесорним системам, в яких кожен процесор виконує конкретні задачі алгоритму і ці процесори працюють паралельно. Це дозволяє забезпечити потрібну швидкодію та точність. Інші фірми застосовують однопроцесорні системи, що вимагає для забезпечення потрібних характеристик застосування більш потужних процесорів. Враховуючи важкі умови експлуатації пристроїв релейного захисту (на багатьох підстанціях ці пристрої працюють в неопалювальних приміщеннях), застосовують спеціальні процесори так званого індустріального виконання, які можуть працювати при температурі оточуючого середовища від мінус 30 до плюс 50°С, відносній вологості до 80%.

Процесор має зв‘язок з об‘єктом захисту через кола вводу – виводу. Вхідною інформацією є, як правило, аналогові сигнали – струми, напруги, температура тощо та бінарні – положення комутаційних апаратів, стан вихідних реле інших пристроїв релейного захисту та автоматики тощо. Вихідними сигналами цифрових захистів, як і інших захистів є традиційно бінарні сигнали. Ці сигнали поступають після спрацювання цифрового захисту в кола управління та в кола сигналізації.

2.1 Перетворення аналогових сигналів

Контрольовані напруги та струми є неперервними в часі аналоговими сигналами і можуть приймати на фіксованому відрізку часу будь-які значення в межах, обумовленими режимом роботи електричної мережі. Цифрові пристрої захисту працюють не з аналоговими, а з дискретними (цифровими) сигналами, котрі можуть приймати на відміну від аналогових сигналів лише кінцеву множину значень для конкретних моментів часу. Процес перетворення аналогових сигналів в дискретні називається дискретизаціє або квантуванням. Пристрій, який здійснює це перетворення називається аналогоцифровим перетворювачем (АЦП).

Попередньо аналогові сигнали, які контролюються пристроями захисту – це струм від трансформатора струму ТА та трансформатора напруги TV підводяться до спеціальних вхідних перетворювачів (на схемі це TAL та TVL). Ці перетворювачі призначені для гальванічної розв‘язки пристрою від зовнішніх кіл (трансформаторів струму та трансформаторів напруги), а також для отримання нормованої напруги на виході з подальшим її перетворенням АЦП в цифрові сигнали.

На рис. 2.2 наведені принципові схеми вхідних перетворювачів струму та напруги, відповідно рис. 2.2а) та рис. 2.2б).

Рис. 2.2. Принципові схеми вхідних перетворювачів струму а) та напруги б).

Сигнали від трансформаторів струму TAта напруги TVподаються на первинні обмотки проміжних трансформаторів TALта TVL. На вторинних обмотках цих трансформаторів відповідно струм та напруга перетворюються в напруги, пропорційні відповідно величині струму та напруги. Для того, щоб імпульсні сигнали, які можуть виникати у вторинних колах трансформаторів струму та напруги, не попадали в електронну частину цифрового пристрою та не пошкоджували його, між первиинною та вторинною обмотками проміжних трансформаторів TALта TVLвстановлюють екран. Для захисту електронних блоків цифрового пристрою від перенапруг паралельно до вторинних обмоток проміжних трансформаторів TALта TVLвстановють варистори RV. В деяких схемах для захисту застосовують стабілітрони. Для узгодження вторинної напруги на виході проміжних трансформаторів з вхідними сигналами пристрою АЦП служать змінні опори R. Для правильної роботи АЦП необхідно унеможливити попадання на нього високочастотного спектру сигналу. Тому застосовується високочастотний фільтр, який виконаний на основі опору Rфта ємності Сф.Слід відмітити, що під час реалізаціїї алгоритму функціонування захисту додатково здійснюється цифрова фільтрація сигналу. Вихідні сигнали uвих з вхідних перетворювачів TAL та TVLпоступають на вхід АЦП.