то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+, aRbx: dx1,dx2,dx3,dx4.
aR+ - температурный коэффициент для резисторов в полож-й области температур;
aRbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
б)Если температура попала в отрицательную область диапазона рабочих температур т.е
20 ,то, используя формулу (3.1) [1] генерируем нормально распределённые значения температурных коэффициентов aR+ , aRbx: dx1,dx2,dx3,dx4.
aR- - температурный коэффициент для резисторов в отриц-й области температур;
aRbx - температурный коэффициент для входного сопротивления.
dx1, dx2, dx3, dx4 – сгенерированные значения температурных коэффициентов для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
x = s×
+ m, (3.1)где x – нормально распределённое случайное число;
m – математическое ожидание;
s – среднеквадратичное отклонение;
ri – стандартное равномерно распределенное случайное число в диапазоне 0..1. (ri получаем при помощи стандартной функции Random).
Далее пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия температуры. Для этого воспользуемся формулами [1]:
(3.2)где
– номинальные значения i-го первичного параметра; –приращения значений i-го первичного параметра под действием температуры;Согласно [1] относительное изменение i-го первичного параметра под воздействием температуры (старения) можно выразить следующим образом:
(3.3) (3.4)где
– температурный коэффициент i-го первичного параметра; °C,где tср – температура окружающей среды;
сi – коэффициент старения i-го первичного параметра;
– рассматриваемый интервал времени.В качестве tср для положительной области диапазона рабочих температур примем
наибольшую из возможных температур - Tv, а для отрицательной области примем наименьшую из возможных температур - Tn. С учётом этого и формул (3.3) и (3.4) формула (3.2) примет вид:
для ‘‘+‘‘ -ой области температур:
(3.5)С учётом этой формулы получаем:
; ; ; ;для ‘‘-‘‘ -ой области температур:
(3.6)С учётом этой формулы получаем:
; ; ; ;где Rtemp1, Rtemp2, Rtemp3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия температуры.
RWtemp – значение входного сопротивления под действием температуры.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его температурного коэффициента (aKoy) с учётом коэффициента парной корреляции
, а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его температурного коэффициента(aKoy):dx5.dx5 - сгенерированное значение температурного коэффициента для коэффициента усиления.
Воспользовавшись формулой (3.5) (для положительной области температур) или (3.6) (для отрицательной области температур) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия температуры:
для ‘‘+‘‘ -ой области температур:
;для ‘‘-‘‘ -ой области температур:
;где KOUtemp – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
В отрицательной и положительной области температур по формуле (1.1) определяем значение выходного параметра - коэффициента передачи (Kexit).
2. Используя формулу (3.1) генерируем нормально распределённые значения коэффициентов старения СR, С Rbx:dx1,dx2,dx3,dx4.
СR– коэффициент старения для резисторов;
С Rbx– коэффициент старения для входного сопротивления;
dx1, dx2, dx3, dx4 – сгенерированные значения коэффициентов старения для
1-го, 2-го, 3-го резисторов и входного сопротивления соответственно.
Воспользовавшись формулой:
(3.7)пересчитываем значения первичных параметров (R1,R2, R3, Rbx) с учётом воздействия старения:
; ; ; ;где Rtime1, Rtime2, Rtime3 - значения сопротивлений 1-го, 2-го и 3-го резисторов соответственно с учётом действия старения.
RWtime – значение входного сопротивления под действием старения.
SR1, SR2, SR3 – номинальные значения 1-го, 2-го и 3-го резисторов соответственно.
SRW – номинальное значение входного сопротивления.
Для получения значений коэффициента усиления (Koy) производим смещение параметров m = m(z) и s = s(z) его коэффициента старения(С Koy) с учётом коэффициента парной корреляции
, а затем, воспользовавшись подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x) генерируем нормально распределённое значение его коэффициента старения(С Koy):dx5.Воспользовавшись формулой (3.7) пересчитываем значения коэффициента усиления (Koy) с учётом воздействия старения:
;где KOUtime – значение коэффициента усиления под действием температуры.
SKOU – номинальное значение коэффициента усиления.
По формуле (1.1) определяем значение выходного параметра: коэффициента передачи (Kexit).
В написанной программе формула (3.1) реализована через функцию:
Function Generator(m:Real;s:Real):Real;
Label L1;
BEGIN
L1:x:=0;
FOR i:=1 TO 12 DO
BEGIN
k:=Random;
x:=x+k;
END;
x:=x-6;
if (x>3) or (x<-3) then goto L1;
m:=m+s*x;
Generator:=m;
END;
Таким образом, введя Generator(m,s)получим случайное число, распределенное по нормальному закону с параметрами m = m и s = s.
В соответствии с [1] формула получения случайных чисел, распределенных по равномерному закону с параметрами a и b следующая:
x =
×r+ a, (3.8)где a, b – параметры равномерной модели;
r –стандартное равномерно распределенное случайное число в диапазоне 0..1.
В написанной программе формула (3.8) реализована через функцию:
Function Generator2(m:real;s:real):Real;
BEGIN
k:=Random;
m:=(s-m)*k+m;
Generator2:=m;
end;
Таким образом, введя Generator2(m, s)получим случайное число, распределенное по равномерному закону с параметрами a=m и b = s.
Пусть случайное число x, имеющее нормальное распределение с параметрами m = m(x) и s = s(x), уже получено. Тогда для получения случайного числа z, имеющего нормальное распределение с параметрами m = m(z) и s = s(z) и коррелированного с x, необходимо произвести смещение параметров m = m(z) и s = s(z) с учётом коэффициента парной корреляции, а затем воспользоваться подпрограммой формирования случайных нормально распределённых чисел с параметрами m = m(z/x) и s = s(z/x):
(3.9) (3.10)Определение величины смещения параметров m = M(z) и s = s(z) с учётом коэффициента парной корреляции в соответствии с формулами (3.9) и (3.10) в программе реализовано следующим образом: