MO - математическое ожидание выходного параметра; CKO-среднеквадратическое отклонение выходного параметра; Kideal - номинальный коэффициент передачи; P - вероятность отсутствия параметрического отказа. Rt,RWt,KOUt - температурные коэффициенты ; Rct,RWct,KOUct - коэффициенты старения.
q=1-P=1-0,698=0,302
Это означает, что при эксплуатации операционных усилителей (ОУ) в заданных условиях в течение промежутка времени tзад=10000 ч в среднем из каждых 100 ОУ лишь у 30-31 экземпляров выходной параметр (коэффициент передачи K) выйдет за пределы Kideal± 5%.
5. ПОЯСНЕНИЯ ФУНКЦИОЕАЛЬНЫХ ЧАСТЕЙ СТРУКТУРНОЙ СХЕМЫ АЛГОРИТМА
Таблица 5.1
Пояснения функциональных частей структурной схемы алгоритма
Номер функциональной части | Пояснение |
23,13,194567,89,1011,1214,1516,17182021 | Ввод исходных данных:SR1,SR2,SR3,SRW,SKOU,dR1,dR2,dR3,dRW,dKOU,Tv,Tn,rxz,N,time,Ki,dKi,Rtotr,Rtpol,RWt,KOUt,Rct,RWct,KOUct.Организация цикла по переменной n.Индексом n учитываются реализации выходного параметра Kexit.Генерация нормально либо равномерно распределённых R1,R2,R3 и нормально распределённых RW,KOU.Закон выбирается в зависимости от допуска на сопротивление. Расчёт Kexit по формуле (1.1).Генерация равномерно распределённого значения температуры в диапазоне от Tn до Tv.Оператор выбора попадания температуры в положительную( 20° С), либо в отрицательную(<20° С) область рабочих температур.Генерация нормально распределённых значений температурных коэффициентов.Пересчёт R1,R2,R3,RW,KOU под действием температуры. Расчёт Kexit по формуле (1.1) с учётом температупы.Генерация нормально распределённых значений коэффициентов старения.Пересчёт R1,R2,R3,RW,KOU под действием старения при t=tзад. Расчёт Kexit по формуле (1.1) с учётом старения.Расчёт Kexit по формуле (1.1) с учётом температуры, старения, производственного допуска.Расчёт вероятностей отсутствия постепенного отказа по формуле (2.7) для отрицательной (P1) и положительной (P2) областей температур и выбор минимальной (P).Статистическая обработка результатов моделирования: расчёт математических ожиданий и среднеквадратических отклонений с учётом температуры, старения, производственного допуска и с учётом всех факторов.Вывод результатов |
ЗАКЛЮЧЕНИЕ И ВЫВОДЫ
В результате проделанной работы было выявлено:
1) На параметрическую надежность РЭУ в большей степени влияет производственный допуск на параметры элементов РЭУ, тогда как дестабилизирующий фактор (температура) и процессы старения (при данных температурных коэффициентах и коэффициентах старения при заданном времени tзад = 10000 час) влияют в меньшей степени, однако уменьшают вероятность, с которой гарантируется отсутствие постепенного отказа.
2) Опыт эксплуатации РЭУ показывает, что эксплуатационная надёжность практически всегда ниже того уровня, который получается по результатам расчёта. Это объясняется как несовершенством технологии производства, так и низкой достоверностью справочной информации.
1. Боровиков С.М. Теоретические основы конструирования, технологии и надежности, -- Минск: Дизайн - Про, 1998.
2. Богданович М.И , Грель И.Н Интегральные микросхемы. Справочник, - Минск.: Полымя,1996
3. Папиев В.П. Сопротивления (том1),Справочник--М.: Электростандарт, 1977.
4. Фомин А.В., Борисов В.Ф., Чермошенский В.В. Допуски в радиоэлектронной аппаратуре, - М.: Советское радио, 1973.
5. Теоретические основы конструирования, технологии и надежности. Методические указания к курсовой работе под ред. Боровикова С.М., - Минск: БГУИР, 1995.
6. ГОСТ 19.002-80 Схемы алгоритмов и программ. Правила выполнения.
7. ГОСТ 2.105-95 Общие требования к текстовым документам.
ПРИЛОЖЕНИЕ 1
PROGRAMToktin;USESCrt;LabelL1;VARk,x,x1,R1,R2,R3,RW,KOU,Kexit,sum,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,mo1,mo2,mo3,mo4,s1,s2,s3,s4,mx,mz,mzx,sx,sz,szx,rxz,P1,P2,P,SR1,SR2,SR3,SRW,SKOU,dR1,dR2,dR3,dR4,dRW,dKOU,Kideal,dKideal,Rtotr,Rtpol,Rct,RWt,KOUt,RWct,KOUct,Rtemp1,Rtemp2,Rtemp3,Rtemp4,RWtemp,KOUtemp,Rtime1,Rtime2,Rtime3,Rtime4,RWtime,KOUtime,temp,dx1,dx2,dx3,dx4,dx5,Tn,Tv:Real;i,a,b:Integer;time,num,n:Integer;FunctionGenerator(m:Real;s:Real):Real;LabelL1;BEGINL1:x:=0;FORi:=1 TO 12 DOBEGINk:=Random;x:=x+k;END;x:=x-6;if (x>3) or (x<-3) thengotoL1;m:=m+s*x;Generator:=m;END;FunctionGenerator2(m:real;s:real):Real;BEGINk:=Random;m:=(s-m)*k+m;Generator2:=m;end;ProcedureCorr(x1,mx,mz,sx,sz:real; Varmzx,szx:real);BEGINmzx:=mz+rxz*(sz/sx)*(x1-mx);szx:=sz*sqrt(1-sqr(rxz));END;BEGINtextbackground(1);ClrScr;Randomize;TextColor(10);GotoXY(12,2);Writeln('ОЦЕHКА ПАРАМЕТРИЧЕСКОЙ HАДЕЖHОСТИ РЭС');GotoXY(3,3);Writeln('С ИСПОЛЬЗОВАHИЕМ МОДЕЛИРОВАHИЯ HА ЭВМ ОТКАЗОВ ЭЛЕМЕHТОВ');GotoXY(1,4);
Writeln('------------------------------------------------------------');Writeln(' Исходные данные: ');Writeln(' -принципиальная схема ');Writeln(' -тип резисторов ОМЛТ ');Writeln(' -тип аналоговой микросхемы DA1:140УД9 ');Writeln(' Факторы принимаемые во внимание: ');Writeln(' -температура (диапазон +10..+60C) ');Writeln(' -старение (Tз=10000 часов) ');riteln('------------------------------------------------------------');Writeln(' Программа будет моделировать постепенные отказы элементов ');Writeln(' и рассчитывать вероятность, с которой гарантируется ');Writeln(' отсутствие постепенного отказа при заданных условиях. ');Writeln('------------------------------------------------------------');ReadKey;ClrScr;Writeln('------------------------------------------------------------');Writeln(' Ввод необходимых данных для рассчета: ');Write(' -введите номинал R1 (рекомендуется 3000.Om +/-5%): ');Read(SR1);GotoXY(63,3);Write('+/-');GotoXY(67,3); Readln(dR1);Write(' -введите номинал R2 (рекомендуется 12000.Om+/-5%): ');Read(SR2);GotoXY(63,4);Write('+/-');GotoXY(67,4); Readln(dR2);Write(' -введите номинал R3(рекомендуется 2400.Om +/-10%): ');Read(SR3);GotoXY(63,5);Write('+/-');GotoXY(68,5);Readln(dR3);Write (' -введите вх.сопротивление RW(рекомендуется 430000.Om+/-30%): ');Read(SRW);GotoXY(70,6);Write('+/-');GotoXY(73,6);Readln(dRW);Write (' -введите коэф-т усиления О.У. KOU (рекомендуется 50000+/-30%): ');Read(SKOU);GotoXY(72,7);Write('+/-');GotoXY(76,7);Readln(dKOU);Writeln(' -введите температурные коэффициенты :');Write (' для R, T=-60..+20C (рекомендуется +/-0.12%): ');Readln(Rtotr);rite (' для R, T=+20..+100C (рекомендуется +/-0.07%): ');Readln(Rtpol);Write (' для RW, T=-60..+100C (рекомендуется +/-0.0075%): ');Readln(RWt);Write (' для KOU, T=-60..+100C (рекомендуется +/-0.25%): ');Readln(KOUt);Writeln(' -введите коэффициенты старения:');Write (' для R (рекомендуется +/-0.0004%) :');Readln(Rct);Write (' для RW (рекомендуется +/-0.0005) :');Readln(RWct);Write (' для KOU (рекомендуется +/-0.003) :');Readln(KOUct);rite(' -введите коэффициент парной корреляции между KOU и RW:');Readln(rxz);Kideal:=(-SR2/SR1)*(1/(1+(1+SR3/SR1+2*SR3/SRW)/SKOU));WriteLn('Коэффициент передачи Kideal=',Kideal:4:3);Write(' -условие отсутствия постепенного отказа в %: ');ReadLn(dKideal);Write (' -количество модулируемых экземпляров: ');Readln(num);Write (' -заданное время работы Тз: ');Readln(time);writeln ('Введите заданный диапазон рабочих температур: '); writeln;write ('Нижняя граница температурного диапазона : '); read(Tn);
write ('Верхняя граница температурного диапазона : '); read(Tv);Writeln(' -----------------------------------------------------------');Writeln(' Моделирование и рассчет займут некоторое время. ');Readkey;TextColor(13+Blink);Writeln(' ПРОИЗВОДИТСЯ МОДЕЛИРОВАHИЕ И РАССЧЕТ: ');TextColor(15);
sum:=0;sum1:=0;sum2:=0;sum3:=0;sum4:=0;sum5:=0;sum6:=0;sum7:=0;
sum8:=0;sum9:=0; sum10:=0;sum11:=0;sum12:=0;sum13:=0;FOR n:=1 TO num DOBEGINif dR1<=5 thenR1:=Generator2(SR1-(SR1*dR1/100),SR1+(SR1*dR1/100))elseR1:=Generator(SR1,(SR1*dR1/300));if dR2<=5 thenR2:=Generator2(SR2-(SR2*dR2/100),SR2+(SR2*dR2/100))elseR2:=Generator(SR1,(SR1*dR1/300));if dR3<=5 thenR3:=Generator2(SR3-(SR3*dR3/100),SR3+(SR3*dR3/100))elseR3:=Generator(SR3,(SR3*dR3/300));RW:=Generator(SRW,(SRW*dRW/300));Corr(RW,SRW,SKOU,(SRW*dRW/300),(SKOU*dKOU/300),mzx,szx);KOU:=Generator(mzx,szx);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum:=sum+(Kexit);sum1:=sum1+sqr(Kexit);temp:=Generator2(Tn,Tv);if (temp>=20) thenbegina:=a+1;dx1:=Generator(0,(Rtpol/300));R1:=R1+R1*Abs(20-Tv)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tv)*dx1;dx2:=Generator(0,(Rtpol/300));R2:=R2+R2*Abs(20-Tv)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tv)*dx2;dx3:=Generator(0,(Rtpol/300));R3:=R3+R3*Abs(20-Tv)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tv)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tv)*dx4;RWtemp:=SRW+SRW*Abs(20-Tv)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tv)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tv)*dx5;Kexit:=(-Rtemp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum2:=sum2+(Kexit);sum3:=sum3+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,(Rct/300));RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum4:=sum4+(Kexit); sum5:=sum5+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum6:=sum6+(Kexit);sum7:=sum7+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P1:=P1+1;end;if (temp<20) thenbeginb:=b+1;dx1:=Generator(0,(Rtotr/300));R1:=R1+R1*Abs(20-Tn)*dx1;Rtemp1:=SR1+SR1*Abs(20-Tn)*dx1;dx2:=Generator(0,(Rtotr/300));R2:=R2+R2*Abs(20-Tn)*dx2;Rtemp2:=SR2+SR2*Abs(20-Tn)*dx2;dx3:=Generator(0,(Rtotr/300));R3:=R3+R3*Abs(20-Tn)*dx3;Rtemp3:=SR3+SR3*Abs(20-Tn)*dx3;dx4:=Generator(0,RWt/300);RW:=RW+RW*Abs(20-Tn)*dx4;RWtemp:=SRW+SRW*Abs(20-Tn)*dx4;Corr(dx4,0,0,RWt/300,KOUt/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*Abs(20-Tn)*dx5;KOUtemp:=SKOU+SKOU*Abs(20-Tn)*dx5;Kexit:=(-temp2/Rtemp1)*(1/(1+(1+Rtemp3/Rtemp1+2*Rtemp3/RWtemp)/KOUtemp));sum8:=sum8+(Kexit); sum9:=sum9+sqr(Kexit);dx1:=Generator(0,(Rct/300));R1:=R1+R1*time*dx1;Rtime1:=SR1+SR1*time*dx1;dx2:=Generator(0,(Rct/300));R2:=R2+R2*time*dx2;Rtime2:=SR2+SR2*time*dx2;dx3:=Generator(0,(Rct/300));R3:=R3+R3*time*dx3;Rtime3:=SR3+SR3*time*dx3;dx4:=Generator(0,RWct/300);RW:=RW+RW*time*dx4;RWtime:=SRW+SRW*time*dx4;Corr(dx4,0,0,RWct/300,KOUct/300,mzx,szx);dx5:=Generator(mzx,szx);KOU:=KOU+KOU*time*dx5;KOUtime:=SKOU+SKOU*time*dx5;Kexit:=(-Rtime2/Rtime1)*(1/(1+(1+Rtime3/Rtime1+2*Rtime3/RWtime)/KOUtime));sum10:=sum10+(Kexit); sum11:=sum11+sqr(Kexit);Kexit:=(-R2/R1)*(1/(1+(1+R3/R1+2*R3/RW)/KOU));sum12:=sum12+(Kexit); sum13:=sum13+sqr(Kexit);IF Kexit<(Kideal-Kideal*dKideal/100) THENIF Kexit>(Kideal+Kideal*dKideal/100) THEN P2:=P2+1;end;END;P1:=P1/a;P2:=P2/b;IF P2>P1 thenbegin P:=P1;mo1:=sum/num;mo2:=sum2/a;mo3:=sum4/a;mo4:=sum6/a;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum3-sqr(sum2)/a)/(a-1));s3:=sqrt((sum5-sqr(sum4)/a)/(a-1));s4:=sqrt((sum7-sqr(sum6)/a)/(a-1));end;if P2<P1 thenbeginP:=P2;mo1:=sum/num;mo2:=sum8/b;mo3:=sum10/b;mo4:=sum12/b;s1:=sqrt((sum1-sqr(sum)/num)/(num-1));s2:=sqrt((sum9-sqr(sum8)/b)/(b-1));s3:=sqrt((sum11-sqr(sum10)/b)/(b-1));s4:=sqrt((sum13-sqr(sum12)/b)/(b-1));end;
ClrScr;WriteLn('Коэффициент передачи: ',Kideal:6:3);WriteLn('Математическое ожидание, учитывая производственный допуск:',mo1:6:3);WriteLn('Среднеквадратичное отклоненение: ',s1:6:4);WriteLn('Математическое ожидание, учитывая температурный допуск: ' ,mo2:6:3);WriteLn('Среднеквадратичное отклоненение: ',s2:6:4);WriteLn('Математическое ожидание, учитывая старение: ',mo3:6:3);WriteLn('Среднеквадратичное отклоненение: ',s3:6:4);WriteLn('Математическое ожидание, учитывая все факторы: ',mo4:6:3);WriteLn('Среднеквадратичное отклоненение: ',s4:6:4);Writeln('-------------------------------------------------------------------------');WriteLn('Вероятность отсутствия параметрического отказа: ');WriteLn('P=',P:6:4);ifnum<4*Sqr(s4)/Sqr(0.01) thenBeginwriteln('Не достигнута заданная точность !');writeln('Следует сделать число реализаций процесса сделать>',num,'!');end;REPEATUNTILKeyPressed;END.