Очевидно, что чем меньше r, тем больше отношение k/n приближается к 1, тем меньше отличается С от В, т.е. тем выше пропускная способность системы связи.
Известно также, что для циклических кодов с минимальным кодовым расстоянием d0=3 справедливо соотношение:
r ³ log (n+1);
С точки зрения внесения постоянной избыточности в кодовую комбинацию выгодно выбирать длинные кодовые комбинации, так как с увеличением n относительная пропускная способность: R = C/B = k/n;
увеличивается, стремясь к пределу равному 1.
В реальных каналах связи действуют помехи, приводящие к появлению ошибок в кодовых комбинациях. При обнаружении ошибки декодирующим устройством в системах с РОС производится переспрос группы кодовых комбинаций. Во время переспроса полезная информация не передается, поэтому скорость передачи информации уменьшается.
В этом случае:
C = B k/n[1- Poo(M+1)/Pпп+Poo(M+1)]
где Pоо - вероятность обнаружения ошибки декодером (вероятность переспроса);
Рпп - вероятность правильного приема (безошибочного приема) кодовой комбинации;
М- емкость накопителя передатчика в числе кодовых комбинаций.
При малых вероятностях ошибки в канале связи (Рош<0.005) вероятность Роо также мала, поэтому знаменатель мало отличается от 1 и можно считать:
C»B×k/n[1-Poo(M+1)];
При независимых ошибках в канале связи, при n×Рош<<1
Poo» n×Poш;
тогда C» B×k/n[1-n×Poш(M+1)];
Емкость накопителя M= [3+2×tp/tкомб];
где tр-время распространения сигнала по каналу связи, с
tкомб - длительность кодовой комбинации из n разрядов, с
Но tp = L/v; tкомб = n/B;
После подстановок имеем R = k/n[1-Poш (4n+2LB/v)]; (1)
При наличии ошибок в канале связи величина R является функцией Рош, n, k, L, В, v. следовательно, существует оптимальное n при котором относительная пропускная способность будет максимальной.
Формула (1) еще более усложняется в случае зависимых ошибок в канале связи (при пакетировании ошибок).
Выведем эту формулу для модели ошибок Пуртова. Необходимо определить вероятность:
Р(³tоб,n ) = (n/ tоб) × Pош = (n/do-1) ×Pош
Рно»1/2 ×P(³tоб, n);
Подставляя значение заменой tоб на dо-1, имеем
r = {3.32[(1-a)×lg n/dо-1+lg Pош - lg Pно]} (2)
Окончательно
R = {1-3.32/n [(1-a)×lg n/d0-1+lg Pош - lg Pно]}× 1- Pош ×n (4+2LB/vn) (3)
К параметрам циклического кода относятся:
n- длина кодовой комбинации;
k- длина информационной части кодовой комбинации;
r- длина проверочной части кодовой комбинации;
Определим оптимальную длину кодовой комбинации n, обеспечивающую наибольшую относительную пропускную способность R и число проверочных разрядов r обеспечивающих заданную вероятность необнаруженной ошибки Рош при заданной кратности ошибок tоб внутри кодовой комбинации и заданной вероятности ошибок Рош в канале связи.
По результатам расчетов составляем таблицы для Рош = 0,0005 и Рош = 0,005:
L=5500 км; a=0.55; a0=4; V=80000 ; B=1200 Бод; Рно=3.0×10-6
n=2
-1 ,где m=5...12R = {1-3.32/n [(1-a)×lg n/d0-1+lg Pош - lg Pно]}× 1- Pош ×n (4+2LB/vn)
r = {3.32[(1-a)×lg n/dо-1+lg Pош - lg Pно]}
k=n-r
R | n | r | k |
0.69758 | 31 | 9 | 22 |
0.83337 | 63 | 10 | 53 |
0.90115 | 127 | 10 | 117 |
0,93277 | 255 | 11 | 244 |
0.94402 | 511 | 11 | 500 |
0.94254 | 1023 | 12 | 1011 |
0.93163 | 2047 | 12 | 2035 |
0.91202 | 4095 | 13 | 4082 |
nопт=511
Из таблицы 1 видно, что наибольшую пропускную способность R=0.94402 обеспечивает циклический код с параметрами n= 511, r= 11. k=500
R | n | r | k |
0.47359 | 31 | 13 | 18 |
0.62827 | 63 | 13 | 50 |
0.6865 | 127 | 14 | 113 |
0,68048 | 255 | 14 | 241 |
0.62465 | 511 | 15 | 496 |
0.52192 | 1023 | 15 | 1008 |
0.36679 | 2047 | 15 | 2032 |
0.14655 | 4095 | 16 | 4079 |
nопт=127
Из таблицы 2 видно, что наибольшую пропускную способность R= 0,6865 обеспечивает циклический код с параметрами n= 127, r= 14 k=113.
Для полученой длинны блока построить граф розделения вероятности кратности ошибки.
Граф вероятностей P(t,n=n опт).
t£n/3
n=n оптимальный
n=511 P=0.0005
n=127 P=0.005