Смекни!
smekni.com

Перспективы развития автоматизированных заводов будущего (стр. 2 из 3)

Система непрерывно принимает информацию о реальных характеристиках оборудования и процессов, сравнивает их с "идеальными" - запланированными. Если обнаруживаются отклонения от запланированной программы работ, то система отвергает первоначальный вариант производства и, осуществляя динамическое планирование, регулируя условия работы станков и процессов, добивается, чтобы производство работало в оптимальном режиме. Тем временем станки и оборудование осуществляют самодиагностику. Если при этом обнаруживается возможность отказа какого-либо узла, то принимаются необходимые корректирующие действия, включающие замену вышедшего из строя модуля в системе. Более того, встроенные в станки приборы и контрольные машины автоматически контролируют изделия на всех этапах производства с тем, чтобы любое отклонение от заданных технических требований автоматически корректировалось. Таким образом, окончательно собранное изделие оказывается полностью проверенным и соответствует предъявляемым к нему техническим требованиям.

Таким образом, автоматизированный (автоматический) завод как комплексная производственная система состоит из аппаратных элементов (технологических, транспортных, управляющих, вычислительных и др.) и математического обеспечения, которые включают средства для проектирования продукции, ее изготовления, производственного планирования и контроля. Функционирует завод в три смены, причем во вторую и третью смены с ограниченным персоналом.

На рис. 1 в качестве примера приведена принципиальная схема функционирования завода-автомата фирмы Toshiba (Япония) для позаказного серийного производства продукции. На заводе роль связующего звена между технологическим процессом и системой обработки данных выполняют сенсорные датчики: они регистрируют технологические параметры и производственные данные о состоянии процесса обработки. Общая автоматизация производства и управление производством осуществляется с помощью сети ЭВМ.

На рис. 2 приведена схема расстановки оборудования на первом и втором этажах из проекта A3 "Красный пролетарий", создаваемого на Московском станкостроительном заводе "Красный пролетарий" (МСПО). A3 "Красный пролетарий" предназначен для изготовления токарных станков с ЧПУ, станков с ручным управлением по индивидуальным заказам, а также другой продукции, соответствующей конъюнктуре рынка и по технологическим параметрам, точностным показателям и габаритным размерам удовлетворяющей требованиям производства. Первый этаж представляет собой механосборочное производство, где выделены: общезаводские склады заготовок, полуфабрикатов, готовых деталей, собранных узлов, комплектующих; ГАУ для производства станин, тел вращения, сборки узлов, в том числе нанесения эпоксидного компаунда при монтаже узлов на станке; ГАУ для сборки шпиндельных узлов и др. Специальные участки предназначены для сборки и общего монтажа и испытания станков. В составе производства первого этажа есть термоконстантный участок для сборки станков повышенной точности. Готовая продукция упаковывается. Транспортные потоки между отдельными ГАУ и производственными участками, складами обеспечивается транспортной системой на базе робокар грузоподъемностью 1, 2, 5 и 10 тонн.

Связь первого и второго этажа осуществляется через систему лифтов. На втором этаже расположены участок окраски штампосварных и литых деталей, узлов в сборе. Здесь расположено электромонтажное производство и участок консервации и упаковки. На площадках A3 расположены технические средства интегрированной автоматизированной системы управления (ИАСУ), конторские и другие помещения.

На рис. 3 приведен вариант фрагмента проекта производственного и учебного цеха-полигона A3 по производству вырубных штампов и пресс-форм, создаваемого на Тверском заводе штампов. Цель создания этого A3 — не только изготовление продукции в условиях индивидуального и мелкосерийного производства, но и организация специального учебного центра подготовки кадров для работы в условиях высокоавтоматизированного компьютеризированного производства.

На рис. 4 приведена типовая укрупненная функциональная схема задач, решаемых интегрированной автоматизированной системой управления (ИАСУ) A3, построенной на базе использования вычислительной техники и реализуемой в отечественных проектах.

Рис. 1 - Схема функционирования завода-автомата фирмы Toshiba


Рис. 2 - Схема расположения оборудования и служб из проекта A3 "Красный пролетарий"

Этаж : 1 - Служба завода; 2 - диспетчерская АСУ завода; 3 - склад цеха консервации и упаковки; 4 - участок нанесения компаунда; 5 - цех консервации и упаковки продукции; 6 - участок окраски изделия в сборе; 7 - участок окраски литых деталей; 8 - участок окраски штампосварных деталей; 9 — вспомогательные производственные участки; 10 — электромонтажный цех; 11 - участок входного контроля узлов; 12 - конторские и бытовые помещения. Этаж /: 13 — склад комплектующих изделий и деталей; 14 — склад комплектующих участка узловой сборки; 15 — склад участка сборки и общего монтажа станков; 16 — склад длинномерных изделий; 17 — склад № 2 деталей и заготовок; 18 — участок испытания станков; 19 - участок сборки и общего монтажа станков; 20 - ГАУ обработки тел вращения; 21 — ГАУ обработки станин; 22 — склад № 1 деталей и заготовок; 23 - склад станин; 24 — конторские и бытовые помещения служб завода; 25 — участок сборки электрошкафов; 26 - выходной поток готовой продукции; 27 - участок нанесения эпоксидного компаунда; 28 - лифты грузоподъемностью 20 т между первым и вторым этажами; 29 - выходной поток упакованной продукции; 30 - входной поток готовых деталей, материалов и комплектующих изделий, отправляемых заказчику в качестве комплектации оборудования; 31 - входной поток деталей, материалов, заготовок и комплектующих для изготовления и сборки станков; 32 - промежуточный склад комплектующих изделий и деталей; 33 — входной поток станин, крупногабаритных заготовок и деталей; 34 - ГАУ обработки ответственных деталей шпиндельных узлов; 35 — термоконстантный участок; 36 - участок общего монтажа и испытания станков; 37 - участок распаковки и расконсервации поступающих на завод заготовок и комплектующих; 38 - участок финишной обработки ответственных деталей

Рис. 3 - Фрагмент механообрабатывающего производства на A3 "Тверской завод штампов" (производственный и учебный цех-полигон):

I - вертикальный накопитель; 2 - подвесной манипулятор; 3, 5, и 8 - транспортный робот для загрузки заготовок на группу станков; 4 - накопитель и загрузочное устройство; - подвесной монорельсовый конвейер; 7- поворотный робот; 9- промежуточный магазин; 10 - транспортная тележка-накопитель


Программно-аппаратная реализация подсистем ИАСУ базируется на ПЭВМ типа РС/АТ-486 и РС/АТ-386, связанных сегментированной ЛВС на базе моноканала Ethernet (IEEE 802.3). Службы корпуса, производственные участки используют отдельные сегменты сети, развязанные с основной магистралью посредством сетевых мостов (Bridge). Такая архитектура ЛВС учитывает особенности метода доступа CSMA/CD (Ethernet) и позволяет снизить нагрузку на моноканал и повысить производительность ЛВС. Внутри сегментов, имеющих небольшую протяженность (менее 200 м), может использоваться "тонкий" (thin) Ethernet ver. 2. Каждый сегмент имеет собственный файл-сервер для хранения данных, используемых ПЭВМ рабочими станциями) данного сегмента. Кроме того, рабочие станции сегментов имеют доступ к файл-серверам других сегментов.

Взаимодействие с оборудованием осуществляется путем обмена данными между ПЭВМ и устройствами программного управления по каналам связи с помощью многоканальных мультиплексоров для ПЭВМ, реализующих интерфейс ИРПС. К ПЭВМ подключаются удаленные терминалы, устанавливаемые в службах и на рабочих местах участков.

Для управления цикловым оборудованием применяются программируемые логические контроллеры (ПЛК), связанные с ЛВС магистралью типа "BitBus", выходящей на одну из ПЭВМ АСУ ПУ.

Прикладное программное обеспечение подсистем ПАСУ разрабатывается на основе систем Clipper-5 и Microsoft-C с библиотекой CodeBase в средах Windows последних поколений.

A3 строится на сочетании прогрессивных техники и технологии производства и управления с качественно новой квалификацией обслуживающего персонала.

В развитых странах мира в основном в опытно-промышленной эксплуатации находятся около 20 A3 с различным уровнем автоматизации подготовки производства, производственных процессов и процессов управления.

Анализ на концептуальном уровне создания A3 в отечественной промышленности показал, что его пуск в промышленную эксплуатацию должен обеспечить рост следующих показателей: производительности труда -в 8-10 раз; фондоотдачи - 1,1-1,5 раза; выпуска продукции на единицу производственной площади - 1,5-2,5 раза; степени производственно-технологической интеграции - 6-8 раз; степени эффективности автоматизации - 3-4 раза; показателей работы основного оборудования - 1,5-2 раза. При этом одновременно происходит сокращение: длительности производственного цикла изготовления продукции для сложных изделий в 2-3 раза, для простых изделий в 8-10 раз; максимального разброса договорного срока поставки продукции в 8-10 раз.

АСУ ОТ (цеха) - автоматизированная система организационно-технологического управления; АСО ДУ - автоматизированная система оперативно-диспетчерского управления