В компьютере В происходит обратный процесс. Физический уровень компьютера В передает полученные данные на канальный уровень, который отделяет заголовок, выполняет предписанные в нем действия и передает оставшиеся данные на сетевой уровень. Сетевой уровень отделяет от полученных данных предназначенный ему заголовок, выполняет необходимые действия и передает оставшиеся данные на верхний уровень и так далее. Прикладной уровень компьютера В передает данные прикладной программе, которой они адресованы.
Эталонная модель определяет функции уровней обмена следующим образом.
Физический уровень отвечает за подключение к среде передачи данных и определяет электротехнические, механические, процедурные и функциональные спецификации активизации и поддержания функционирования канала обмена между взаимодействующими системами. Спецификации физического уровня также определяют характеристики среды передачи данных. Такими характеристиками могут быть уровни напряжений и временные параметры сигналов, частотные характеристики, типы кабелей и разъемов, максимальные расстояния между устройствами и другие.
Канальный уровень обеспечивает надежную передачу данных через физический канал. В его функции входит формирование, прием и передача кадров данных, получаемых от сетевого и физического уровней. Спецификации канального уровня определяют различные характеристики сети и протокола обмена, включая физическую адресацию устройств, топологию сети, уведомление об ошибках, последовательность передаваемых кадров данных, загрузку каналов обмена.
Сетевой уровень определяет сетевые адреса компьютеров источника и приемника информации, которые отличаются от их физических адресов. Поскольку этот уровень имеет дело с логической организацией информационной сети, маршрутизаторы могут использовать его для определения направления передачи данных.
Транспортный уровень является ответственным за то, чтобы данные не содержали ошибок, а кадры были переданы в соответствующей последовательности. Если в данных обнаруживается ошибка, то они должны быть переданы повторно.
Транспортный уровень также управляет потоком обмена и следит, чтобы передающее устройство не посылало данных больше, чем может обработать приемное. Этот уровень выполняет функции мультиплексирования, то есть обеспечение приема данных от разных приложений и их отправку по одной физической линии связи. Этот же уровень отвечает за организацию и поддержание виртуальных сетей.
Сеансовый уровень управляет началом и окончанием сеансов обмена данными. Он обеспечивает формирование запросов на передачу данных и ответных действий между приложениями, работающими в разных сетях, то есть осуществляет синхронизацию процессов передачи и приема данных в передающем и принимающем компьютерах.
Представительный уровень обеспечивает возможность обмена данными между приложениями, использующими различные методы кодирования, форматы и структуры данных, то есть отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой прикладным уровнем другой системы. Например, приложения могут использовать разные форматы графических изображений – GIF и JPEG. При наличии подобных различий представительный уровень осуществляет перекодирование, трансляцию, переформатирование данных и другие необходимые операции.
Прикладной уровень определяет возможность осуществления обмена данными между приложениями компьютеров и, если такая возможность есть, инициирует действия нижних уровней модели. Получив от соответствующего компонента приложения запрос на обслуживание, прикладной уровень определяет наличие в сети партнера, возможность установления с ним связи и достаточность ресурсов для реализации обмена. Напрямую взаимодействуя с приложениями, прикладные уровни синхронизируют их работу в рамках обмена данными.
Модель OSI описывает концепцию организации информационной связи компьютеров, но не конкретный способ обмена данными. Реальная последовательность действий компьютеров определяется используемыми протоколами обмена. В рассматриваемом контексте протокол определяется как набор правил и соглашений, предписывающих компьютерам последовательность действий для осуществления обмена через среду передачи данных.
1.2.2 Базовые технологии локальных вычислительных сетей
Архитектуры или технологии локальных сетей можно разделить на два поколения. К первому поколению относятся архитектуры, обеспечивающие низкую и среднюю скорость передачи информации: Ethernet 10 Мбит/с), Token Ring (16 Мбит/с) и ARC Net (2,5 Мбит/с).
Для передачи данных эти технологии используют кабели с медной жилой. Ко второму поколению технологий относятся современные высокоскоростные архитектуры: FDDI (100 Мбит/с), АТМ (155 Мбит/с) и модернизированные версии архитектур первого поколения (Ethernet): Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1000 Мбит/с).
Усовершенствованные варианты архитектур первого поколения рассчитаны как на применение кабелей с медными жилами, так и на волоконно-оптические линии передачи данных.
Новые технологии (FDDI и ATM) ориентированы на применение волоконно-оптических линий передачи данных и могут использоваться для одновременной передачи информации различных типов (видеоизображения, голоса и данных).
Сетевая технология – это минимальный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительной сети. Сетевые технологии называют базовыми технологиями. В настоящее время насчитывается огромное количество сетей, имеющих различные уровни стандартизации, но широкое распространение получили такие известные технологии, как Ethernet, Token-Ring, Arcnet, FDDI.
Ethernet является методом множественного доступа с прослушиванием несущей и разрешением коллизий (конфликтов). Перед началом передачи каждая рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу данных. Реально конфликты приводят к снижению быстродействия сети только в том случае, когда работают 80–100 станций.
Метод доступа Arcnet получил широкое распространение в основном благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token -Ring. Arcnet используется в локальных сетях с топологией «звезда».
Один из компьютеров создает специальный маркер (специальное сообщение), который последовательно передается от одного компьютера к другому. Если станция должна передать сообщение, она, получив маркер, формирует пакет, дополненный адресами отправителя и назначения. Когда пакет доходит до станции назначения, сообщение «отцепляется» от маркера и передается станции.
Метод доступа Token Ring разработан фирмой IBM; он рассчитан кольцевую топологию сети. Данный метод напоминает Arcnet, так как тоже использует маркер, передаваемый от одной станции к другой. В отличие от Arcnet при методе доступа Token Ring предусмотрена возможность назначать разные приоритеты разным рабочим станциям.
Технология Ethernet сейчас наиболее популярна в мире. В классической сети Ethernet применяется стандартный коаксиальный кабель двух видов (толстый и тонкий). Однако все большее распространение получила версия Ethernet, использующая в качестве среды передачи витые пары, так как монтаж и обслуживание их гораздо проще. Применяются топологии типа “шина” и типа “пассивная звезда”.
Стандарт определяет четыре основных типа среды передачи.
- 10BASE5 (толстый коаксиальный кабель);
- 10BASE2 (тонкий коаксиальный кабель);
- 10BASE-T (витая пара);
- 10BASE-F (оптоволоконный кабель).
Fast Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 100 Мбит/с. Сети Fast Ethernet совместимы с сетями, выполненными по стандарту Ethernet. Основная топология сети Fast Ethernet - пассивная звезда.
Стандарт определяет три типа среды передачи для Fast Ethernet:
- 100BASE-T4 (счетверенная витая пара);
- 100BASE-TX (сдвоенная витая пара);
- 100BASE-FX (оптоволоконный кабель).
Gigabit Ethernet – высокоскоростная разновидность сети Ethernet, обеспечивающая скорость передачи 1000 Мбит/с. Стандарт сети Gigabit Ethernet в настоящее время включает в себя следующие типы среды передачи:
- 1000BASE-SX – сегмент на мультимодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм.
- 1000BASE-LX – сегмент на мультимодовом и одномодовом оптоволоконном кабеле с длиной волны светового сигнала 1300 нм.
- 1000BASE-CX – сегмент на электрическом кабеле (экранированная витая пара).
- 1000BASE-T – сегмент на электрическом кабеле (счетверенная неэкранированная витая пара).
В связи с тем, что сети совместимы, легко и просто соединять сегменты Ethernet, Fast Ethernet и Gigabit Ethernet в единую сеть.
Сеть Token-Ring предложена фирмой IBM. Token-Ring предназначалась для объединение в сеть всех типов компьютеров, выпускаемых IBM (от персональных до больших). Сеть Token-Ring имеет звездно-кольцевую топологию.
Сеть Arcnet - это одна из старейших сетей. В качестве топологии сеть Arcnet использует “шину” и “пассивную звезду”. Сеть Arcnet пользовалась большой популярностью. Среди основных достоинств сети Arcnet можно назвать высокую надежность, низкую стоимость адаптеров и гибкость. Основным недостаткам сети является низкая скорость передачи информации (2,5 Мбит/с).
FDDI (Fiber Distributed Data Interface) – стандартизованная спецификация для сетевой архитектуры высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/с.
Основные технические характеристики сети FDDI следующие:
- Максимальное количество абонентов сети – 1000.
- Максимальная протяженность кольца сети – 20 км
- Максимальное расстояние между абонентами сети – 2 км.