Таким образом, если извне будет подведена энергия, достаточная для перехода электрона через запрещенную зону, то полупроводник будет обладать определенной проводимостью.
При температуре абсолютного нуля все валентные уровни заполнены с вероятностью, равной единице, а вероятность заполнения любого уровня зоны проводимости равна нулю. При комнатной температуре часть валентных электронов переходит в зону проводимости.
При освобождении электрона из ковалентной связи в ней возникает как бы свободное место, обладающее элементарным положительным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой, а процесс образования пары электрон – дырка получил название генерации зарядов. При этом надо иметь в виду, что концентрация дырок в идеальной кристаллической решетке химически чистого (собственного) полупроводника всегда равна концентрации свободных электронов.
При образовании пары электрон-дырка атом становится заряженным положительно и может притянуть к себе электрон соседнего атома. Связь восстанавливается, атом опять становится нейтральным. Однако нехватка электрона будет в соседнем атоме, который, в свою очередь, захватит электрон у своего соседа и т.д. до тех пор, пока имеющуюся вакансию не заполнит один из свободных электронов. Процесс заполнения свободной связи (дырки) электроном называют рекомбинацией.
Таким образом, по кристаллу происходит перемещение не только свободных электронов, но и дырок. И они, также как электроны, могут принять участие в формировании электрического тока. При отсутствии внешнего электрического поля электроны и дырки перемещаются в кристалле хаотически вследствие теплового движения. Характеристиками этого движения являются: средняя длина свободного пробега, среднее время жизни, подвижность носителей заряда и некоторые другие.
При приложении внешнего источника электрического поля, движение дырок и электронов становится упорядоченным и в кристалле возникает электрический ток. Проводимость полупроводника будет обусловлена перемещением, как свободных электронов, так и дырок. В первом случае носители зарядов отрицательны (негативны), во втором – положительны (позитивны). Соответственно различают два вида проводимости полупроводников – электронную, или проводимость типа n (от слова, negative – отрицательный), и дырочную, или проводимость типа р (от слова positive – положительный).
В химически чистом кристалле полупроводника число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса зарядов обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника. При этом общий ток в полупроводнике равен сумме электронного и дырочного токов, которые в чистом полупроводнике равны.
Наличие примесей (атомов других веществ с иной валентностью по сравнению валентностью полупроводника) существенно изменяет проводимость полупроводника. Целенаправленное введение в кристалл полупроводника примесей приводит к тому, что в нем будет наблюдаться преобладание либо свободных электронов, либо дырок. Примеси, вызывающие в полупроводнике увеличение свободных электронов, называются донорными, а вызывающие увеличение дырок – акцепторными. В первом случае примесный полупроводник получил наименование полупроводника п-типа, во втором – р-типа, а проводимость, вызванная присутствием в кристалле полупроводника примесей, называется примесной.
В зависимости от того, атомы какого вещества будут введены в кристалл, можно получить преобладание избыточных свободных электронов либо дырок, т.е. получить полупроводник с преобладающей электронной или дырочной проводимостью.
Предположим, что в кристалл кремния, атомы которого имеют четыре валентных электрона, введен атом вещества, имеющий на внешней орбите не четыре, а пять валентных электронов (рисунок 1.2, б), например, атом бора. В этом случае атомы бора своими четырьмя из пяти валентными электронами вступают в связь с атомами кристаллической решетки кремния. Пятый валентный электрон сурьмы окажется не связанным, т.е. становится избыточным с точки зрения формирования связей кристаллической решетки.
Это меняет энергетическую модель полупроводника (рисунок 1.1). Атомы примеси обладают энергетическими уровнями, отличающимися от уровней собственного полупроводника. Так, пятивалентные примеси мышьяка, сурьмы, бора и других веществ имеют энергетические уровни валентных электронов вблизи зоны проводимости основного полупроводника (эти уровни обычно называют примесным, рисунок 1.1, б). Разница между энергетическим уровнем валентных электронов примесных атомов и зоной проводимости (DW на рисунке 1.1, б) составляет примерно 0,05 эВ. Уже при комнатной температуре почти все электроны с примесного уровня переходят в зону проводимости. Свободных электронов становится значительно больше, чем дырок, возникших в результате отрыва электрона от атома основного вещества. При этом время жизни дырки уменьшается в связи с большей вероятностью «встретить» свободный электрон и рекомбинировать. Поэтому при формировании электрического тока он в основном определяется электронной составляющей.
Полупроводники, электропроводность которых повысилась благодаря образованию большого числа свободных электронов при введении примеси, называются полупроводниками с электронной проводимостью, или сокращенно полупроводниками типа п (или п-типа). Электроны, составляющие подавляющее большинство подвижных носителей заряда в полупроводниках n типа, называют основными носителями заряда, а дырки – неосновными. Примеси, обеспечивающие получение электронной проводимости, называют донорными.
Введение в четырехвалентный полупроводник трехвалентного элемента, например галлия (рисунок 1.2, в), приводит, наоборот, к незавершенности ковалентных связей кристаллической решетки, которые воссоздаются за счет электронов соседних атомов, что соответствует образованию дырки. Образовавшиеся дырки могут перемещаться по кристаллу, создавая дырочную проводимость.
В энергетической модели уровни валентных электронов трехвалентных атомов примеси (индия, галлия, алюминия и др.) расположены в непосредственной близости от зоны валентных электронов собственного полупроводника (рисунок 1.1, в, DW » 0,05 эВ). В cвязи c этим электроны валентной зоны легко переходят на примесный уровень («захватываются» трехвалентными атомами примеси). Следовательно, в валентной зоне появляется большое число дырок, что обусловливает повышение проводимости полупроводника, которая при такой примеси будет дырочной. Полупроводники, электропроводность которых обусловливается в основном движением дырок, называются полупроводниками с дырочной проводимостью или сокращенно полупроводниками типа р (р типа), примеси – акцепторными.
Для того чтобы примесная проводимость преобладала над собственной, концентрация атомов донорной или акцепторной примеси должна превышать концентрацию собственных носителей заряда. Практически при изготовления примесных полупроводников концентрация примесей значительно (не менее чем на три порядка) больше концентрации собственных носителей.
Основным элементом большинства полупроводниковых приборов является электронно-дырочный переход (р-п переход), представляющий собой переходный слой между двумя областями полупроводника, одна из которых имеет электронную электропроводность, другая – дырочную.
Реально электронно-дырочный переход нельзя создать простым соприкосновением пластин n и p-типа, так как при этом неизбежен промежуточный слой воздуха, окислов или поверхностных загрязнений, невозможно идеальное совпадение кристаллических решеток и т.д. Эти переходы получают вплавлением или диффузией соответствующих примесей в пластинки монокристалла полупроводника, или путем выращивания р-n перехода из расплава полупроводника с регулируемым количеством примесей и т.п. В зависимости от способа изготовления р-n переходы бывают сплавными, диффузионными и др. Однако, для упрощения анализа процесса формирования перехода будем считать, что изначально взяли и механически соединили два примесных полупроводниковых кристалла с проводимостью разного типа (nи р типа) с одинаковой концентрацией донорных и акцепторных примесей и с идеальной поверхностью и кристаллической решеткой. Рассмотрим явления, возникающие на их границе.
Рисунок 1.3. Образование р-п перехода
Вследствие того, что концентрация электронов в n области выше, чем в р-области, а концентрация дырок в р-области выше, чем в n области, на границе этих областей существует градиент концентраций носителей, вызывающий диффузионный ток электронов из n области в p область и диффузионный ток дырок из p области в n область. Кроме тока, обусловленного движением основных носителей заряда, через границу раздела полупроводников возможен ток неосновных носителей (электронов из р области в n область и дырок из n области в p-область). Однако, они незначительны (вследствие существенного различия в концентрациях основных и неосновных носителей) и мы их не будем учитывать.
Если бы электроны и дырки были нейтральными, то диффузия в конечном итоге привела к полному выравниванию их концентрации по всему объему кристалла. На самом же деле процессу диффузии препятствует электрическое поле, возникающее в приконтактной области. Уход электронов из приконтактной n области приводит к тому, что их концентрация здесь уменьшается и возникает нескомпенсированный положительный заряд ионов донорной примеси. Точно так же в р области вследствие ухода дырок их концентрация в приконтактном слое снижается и здесь возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Ионы же «уйти» со своих мест не могут, т.к их удерживают сильнейшие силы (связи) кристаллической решетки. Таким образом, на границе областей n и p типа образуются два слоя противоположных по знаку зарядов. Возникает электрическое поле, направленное от положительно заряженных ионов доноров к отрицательно заряженным ионам акцепторов. Область, образовавшихся пространственных зарядов и электрическое поле собственно и представляет собой р-n переход. Его ширина имеет порядок от сотых долей до единиц микрометров, что является значительным размером по сравнению с размерами кристаллической решетки.