Смекни!
smekni.com

Полупроводниковые преобразователи (стр. 2 из 6)

Рис. 10.5

На рис. 10.5 изображена схема замещения трансформатора, соответствующая уравнению (10.2).

XЭ - индуктивное сопротивление, пропорциональное реактивной мощности, затрачиваемой на создание основного магнитного потока.

В режиме холостого хода

.

Коэффициент трансформации

.

Коэффициент трансформации экспериментально определяется из опыта холостого хода.


Работа трансформатора под нагрузкой

Если к первичной обмотке трансформатора подключить напряжение U1, а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I1 и I2. Эти токи создадут магнитные потоки Ф1 и Ф2, направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС E1 и E2 уменьшаются. Действующее значение напряжения U1 остается неизменным. Уменьшение E1, согласно (10.2), вызывает увеличение тока токи I1. При увеличении тока I1 поток Ф1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Ф2. Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

В нагруженном трансформаторе, кроме основного магнитного потока, имеются потоки рассеяния Ф1S и Ф2S, замыкающиеся частично по воздуху. Эти потоки индуктируют в первичной и вторичной обмотках ЭДС рассеяния.

,
,

где X2S - индуктивное сопротивление рассеяния вторичной обмотки.

Для первичной обмотки можно записать уравнение

. (10.3)

Для вторичной обмотки

, (10.4)

где R2 - активное сопротивление вторичной обмотки;

ZН - сопротивление нагрузки.

Основной магнитный поток трансформатора есть результат совместного действия магнитодвижущих сил первичной и вторичной обмоток.

.

Трансформаторная ЭДС E1, пропорциональная основному магнитному потоку, приблизительно равна напряжению на первичной катушке U1. Действующее значение напряжения постоянно. Поэтому основной магнитный поток трансформатора остается неизменным при изменении сопротивления нагрузки от нуля до бесконечности.

Если

, то и сумма магнитодвижущих сил трансформатора

. (10.5)

Уравнение (10.5) называется уравнением равновесия магнитодвижущих сил.

Уравнения (10.3), (10.4), (10.5) называются основными уравнениями трансформатора.

Из уравнения (10.5) получим формулу

. (10.6)

Согласно формуле (10.6), ток в первичной обмотке складывается из тока холостого хода, или намагничивающего тока, и тока, компенсирующего размагничивающее действие вторичной обмотки.

Умножим левую и правую части уравнения (10.4) на коэффициент трансформации KT

. (10.7)

где

приведенное активное сопротивление вторичной обмотки;

приведенное индуктивное сопротивление вторичной обмотки;

приведенное напряжение на нагрузке;

приведенное сопротивление нагрузки.

Величиной намагничивающего тока можно пренебречь, так как она мала по сравнению с током первичной обмотки трансформатора в нагрузочном режиме

, тогда
.

Подставим уравнение (10.7) в уравнение (10.3).

Получим

. (10.8)

Уравнению (10.8) соответствует упрощенная схема замещения трансформатора, изображенная на рис. 10.6.


Рис. 10.6

активное сопротивление короткого замыкания трансформатора,

индуктивное сопротивление короткого замыкания.

Параметры упрощенной схемы замещения определяются из опыта короткого замыкания. Для этого собирается схема рис. 10.7.

Рис. 10.7

Зажимы вторичной обмотки замыкаются накоротко. Измеряют напряжение, ток и мощность: U1k, I1k, Pk. Опыт короткого замыкания осуществляется при пониженном напряжении на первичной обмотке.
Затем вычисляют

.

где ZK - полное сопротивление короткого замыкания.

Рис. 10.8

На рис. 10.8 изображена векторная диаграмма трансформатора, соответствующая упрощенной схеме замещения. Нагрузкой трансформатора является активное сопротивление RH.

Вектор тока

совмещен с вещественной осью комплексной плоскости.

Вектор напряжения на сопротивлении нагрузки совпадает с вектором тока по направлению. Вектор напряжения на индуктивном сопротивлении

перпендикулярен, а вектор напряжения
параллелен вектору тока. Вектор напряжения на входе трансформатора равен сумме трех векторов напряжения.

Упрощенная схема используется для расчета цепей, содержащих трансформаторы.

Специальные типы трансформаторов

Наиболее часто в электротехнических установках используются следующие специальные типы трансформаторов: автотрансформаторы, многообмоточные и трехфазные трансформаторы.

Автотрансформатором называется такой трансформатор, у которого имеется только одна обмотка, часть которой принадлежит одновременно вторичной и первичной цепям. Схема однофазного трансформатора изображена на рис. 10.9.


Рис. 10.9

Режим холостого хода автотрансформатора, когда I2 = 0, ничем не отличается от режима холостого хода обычного трансформатора.

Подводимое к трансформатору напряжение U1 = UAB равномерно распределяется между витками первичной обмотки.

Вторичное напряжение

где

коэффициент трансформации.

Автотрансформаторы выгодно использовать в тех случаях, когда коэффициент трансформации близок к единице.

Многообмоточные (одна первичная и несколько вторичных) трансформаторы используются в радиотехнических схемах для получения нескольких напряжений.

В режиме холостого хода работа таких трансформаторов не отличается от двухобмоточных.

В трехфазной сети переменного тока преобразование напряжений осуществляется с помощью трехфазного трансформатора с общим для трех фаз сердечником. В трехфазном трансформаторе с общим магнитопроводом магнитный поток любой из фаз может замыкаться через стержни, на которых расположены обмотки двух других фаз. Затраты стали на трехфазный трансформатор значительно меньше, чем на три однофазных трансформатора.

Статические преобразователи эл. энергии: трансформаторы. Назначение, классификация, виды, конструкция

Трансформатор

Статическое (не имеющее подвижных частей) устройство для преобразования переменного напряжения по величине. В основе действия трансформатора лежит явление электромагнитной индукции. Трансформатор состоит из одной первичной обмотки (ПО), одной или нескольких вторичных обмоток (ВО) и ферромагнитного сердечника (магнитопровода), обычно замкнутой формы. Все обмотки расположены на магнитопроводе и индуктивно связаны между собой. Иногда вторичной обмоткой служит часть ПО (или наоборот); такие трансформаторы называются автотрансформаторами. Концы ПО (вход трансформатора) подключают к источнику переменного напряжения, а концы ВО (его выход) - к потребителям. Переменный ток в ПО приводит к появлению в магнитопроводе переменного магнитного потока. В реальных трансформаторах часть магнитного потока замыкается вне магнитопровода, образуя так называемые потоки рассеяния; однако в высококачественные трансформаторы потоки рассеяния малы по сравнению с основным потоком (потоком в магнитопроводе).