Смекни!
smekni.com

Последовательности одиночных сигналов. Монохроматический и принятый сигнал (стр. 2 из 2)

Рис. 10. Нормированная корреляционная функция флуктуаций принятого сигнала.

Время корреляции флуктуации принятого сигнала τ0 зависит от многих факторов (диапазона частот, размеров объекта наблюде­ния, динамики его движения, условий распространения радиоволн и др.) и может изменяться в широком диапазоне от единиц миллисекунд до единиц секунд.

Таким образом, корреляционная функция принятого сигнала окончательно может быть представлена следующим выражением:

Она отличается от корреляционной функции излучаемой нефлуктуирующей ограниченной последовательности одиночных сигналов наличием дополнительного сомножителя r0(τ) . Произведение rN(τ) * rc(τ) характеризует нормированную корреляционную функцию огибающей ограниченной по времени и флуктуирующей по амплитуде и фазе последовательности одиночных сигналов:

.

Энергетический спектр принятого сигнала представляется произведе­нием энергетического спектра одиночного сигнала и междупериодного энергетического спектра флуктуирующей ограниченной последова­тельности

причем гребенчатый междупериодный энергетический спектр есть размноженный по частоте с интервалом, равным частоте повторения, энергетический спектр огибающей последовательности с учетом ог­раниченного времени наблюдения и флуктуации:

Ширина зубцов энергетического спектра принятого сигнала, т.е. ширина энергетического спектра огибающей последовательности, оп­ределяется, во-первых, величиной, обратной времени наблюдения (продолжительности последовательности) и, во-вторых, спектра флуктуации принятого сигнала:

Вероятностные свойства принятого сигнала определяются ве­роятностными характеристиками его комплексной огибающей. Наиболее полной характеристикой комплексной огибающей принятого сигнала, которая вместе с тем является необходимой при решении целого ряда задач синтеза и анализа РТС, является многомерная плотность вероятности значений этого процесса, взятых в диск­ретные моменты времени.

Рис. 11. Совместное распределение квадратурных составляющих комплексной огибающей принятого сигнала.

Поэтому совместное распределение вероятности квадратурных сос­тавляющих комплексной огибающей принятого сигнала определяется выражением

и изображается колоколообразной поверхностью (рис. 11).

Совместная плотность вероятности квадратурных составляю­щих представляется произведением одномерных нормальных (гаус­совых) распределений вероятности каждой квадратурной составляющей

что свидетельствует о независимости квадратурных составляющих для одного и того же момента времени.

Определение совместного распределения вероятности ампли­туда и фазы принятого сигнала Ес и φс связано с функциональным преобразованием

(M1, M1*) → (Ес, φс).

Поскольку

М1 = Ес exp(iφc);

M1* = Ecexp(-iφc),

якобиан этого преобразования равен

Поэтому совместное распределение вероятности амплитуды и фазы принятого сигнала определяется выражением

Учитывая, что амплитуда принятого сигнала может принимать любые положительные значения, находим одномерное распределение фазы принятого сигнала:

которое является равномерным на интервале -πдо πрадиан (рис. 12).

Учитывая, что фаза принятого сигнала может принимать любые значения от -π до π радиан, находим одномерное распределе­ние вероятности амплитуды принятого сигнала

которое называется релеевским распределением (рис. 13).

Совместная плотность вероятности амплитуды и фазы принято­го сигнала есть произведение одномерных распределений вероятности амплитуды и фазы:

р(Ес, φс) = р(Ес) + р(φс)

что свидетельствует о независимости мгновенных значений ампли­туды и фазы принятого сигнала для одного и того же момента времени.

Мгновенная мощность принятого сигнала есть половина квад­рата его амплитуды:

Рс = Ес2/2

Учитывая, что

якобиан преобразования Ес → Рс равен

Рис. 12. Равномерное распределение фазы принятого сигнала.

Рис. 13. Релеевское распределение амплитуды принятого сигнала.

Рис. 14. Экспоненциальное распределение мгновенной мощности принятого сигнала.

Поэтому плотность вероятности мгновенной мощности принятого сигнала определяется выражением:

Такое распределение называется экспоненциальным (рис. 14).


ЛИТЕРАТУРА

1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.

2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.

3. Медицинская техника, М., Медицина 1996-2000 г.

4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.

5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.

6. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.