Рис. 10. Нормированная корреляционная функция флуктуаций принятого сигнала.
Время корреляции флуктуации принятого сигнала τ0 зависит от многих факторов (диапазона частот, размеров объекта наблюдения, динамики его движения, условий распространения радиоволн и др.) и может изменяться в широком диапазоне от единиц миллисекунд до единиц секунд.
Таким образом, корреляционная функция принятого сигнала окончательно может быть представлена следующим выражением:
Она отличается от корреляционной функции излучаемой нефлуктуирующей ограниченной последовательности одиночных сигналов наличием дополнительного сомножителя r0(τ) . Произведение rN(τ) * rc(τ) характеризует нормированную корреляционную функцию огибающей ограниченной по времени и флуктуирующей по амплитуде и фазе последовательности одиночных сигналов:
.Энергетический спектр принятого сигнала представляется произведением энергетического спектра одиночного сигнала и междупериодного энергетического спектра флуктуирующей ограниченной последовательности
причем гребенчатый междупериодный энергетический спектр есть размноженный по частоте с интервалом, равным частоте повторения, энергетический спектр огибающей последовательности с учетом ограниченного времени наблюдения и флуктуации:
Ширина зубцов энергетического спектра принятого сигнала, т.е. ширина энергетического спектра огибающей последовательности, определяется, во-первых, величиной, обратной времени наблюдения (продолжительности последовательности) и, во-вторых, спектра флуктуации принятого сигнала:
Вероятностные свойства принятого сигнала определяются вероятностными характеристиками его комплексной огибающей. Наиболее полной характеристикой комплексной огибающей принятого сигнала, которая вместе с тем является необходимой при решении целого ряда задач синтеза и анализа РТС, является многомерная плотность вероятности значений этого процесса, взятых в дискретные моменты времени.
Рис. 11. Совместное распределение квадратурных составляющих комплексной огибающей принятого сигнала.
Поэтому совместное распределение вероятности квадратурных составляющих комплексной огибающей принятого сигнала определяется выражением
и изображается колоколообразной поверхностью (рис. 11).
Совместная плотность вероятности квадратурных составляющих представляется произведением одномерных нормальных (гауссовых) распределений вероятности каждой квадратурной составляющей
что свидетельствует о независимости квадратурных составляющих для одного и того же момента времени.
Определение совместного распределения вероятности амплитуда и фазы принятого сигнала Ес и φс связано с функциональным преобразованием
(M1, M1*) → (Ес, φс).
Поскольку
М1 = Ес exp(iφc);
M1* = Ecexp(-iφc),
якобиан этого преобразования равен
Поэтому совместное распределение вероятности амплитуды и фазы принятого сигнала определяется выражением
Учитывая, что амплитуда принятого сигнала может принимать любые положительные значения, находим одномерное распределение фазы принятого сигнала:
которое является равномерным на интервале -πдо πрадиан (рис. 12).
Учитывая, что фаза принятого сигнала может принимать любые значения от -π до π радиан, находим одномерное распределение вероятности амплитуды принятого сигнала
которое называется релеевским распределением (рис. 13).
Совместная плотность вероятности амплитуды и фазы принятого сигнала есть произведение одномерных распределений вероятности амплитуды и фазы:
р(Ес, φс) = р(Ес) + р(φс)
что свидетельствует о независимости мгновенных значений амплитуды и фазы принятого сигнала для одного и того же момента времени.
Мгновенная мощность принятого сигнала есть половина квадрата его амплитуды:
Рс = Ес2/2
Учитывая, что
якобиан преобразования Ес → Рс равенРис. 12. Равномерное распределение фазы принятого сигнала.
Рис. 13. Релеевское распределение амплитуды принятого сигнала.
Рис. 14. Экспоненциальное распределение мгновенной мощности принятого сигнала.
Поэтому плотность вероятности мгновенной мощности принятого сигнала определяется выражением:
Такое распределение называется экспоненциальным (рис. 14).
ЛИТЕРАТУРА
1. Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.
2. Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.
3. Медицинская техника, М., Медицина 1996-2000 г.
4. Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.
5. Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.
6. Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.