Смекни!
smekni.com

Построение системы автоматического контроля (стр. 4 из 9)

3. Блок управляющей логики, реализованный на счетчиках и логических элементах. Этот блок управляет всей схемой в целом.

4. Блок мультиплексирования. Данный блок реализован на двух мультиплексорах. Формирует последовательность поступления битов информации на интерфейс.

5. Преобразователь, реализованный на прецизионном АЦП К572ПВ4.

Осуществляет преобразование аналогового сигнала в цифровой код и выборку канала от датчика.

6. Датчики – датчики первичной информации (температуры, влажности освещенности и давления).

7. Интерфейс с ЭВМ – осуществляет побитовую передачу данных в ЭВМ. Необходим для преобразования уровней КМДП-логики с уровнями стандарта RS-232C (технические характеристики приведены в следующем разделе).

Выбор RS-232C обусловлен тем, что он позволяет расположить устройство сопряжения (УС) (причем УС любой сложности) на большом расстоянии от компьютера (до 15 метров), что в нашем случае наиболее актуально.

Работает устройство следующим образом.

По функциональному назначению схему можно разделить на 3 блока: блок, включающий АЦП, преобразователь кода и блок преобразования уровня.

Функции первого блока описаны выше (см. назначение «преобразователь».)

Преобразователь кода переводит представление информации в последовательное, осуществляя распознавание начала и конца посылки, синхронизацию приема-передачи битов кадра, слежение за наличием ошибок, информирование о готовности к выполнению операций и т.п. Сюда входят все раннее перечисленные блоки, кроме блоков «преобразователь» и «интерфейс с ЭВМ».

Блок преобразования уровня обеспечивает электрическое согласование уровней сигналов последовательного интерфейса (±12 В), с уровнями устройства сопряжения (КМДП). Сюда входит блок «интерфейс с ЭВМ».

Генератор таковых импульсов генерирует импульсы прямоугольной формы и фиксированной частоты. Импульсы поступают на вход делителя частоты, где делятся на константу (“14”) и поступают на блок управляющей логики.

В составе блока управляющей логики можно выделить три функциональных подблока:

1) Первая подсистема управления реализована на четырехразрядном двоичном счетчике с параллельным выходом и двух логических элементах (2И-НЕ и НЕ). Счетчик считает до восьми и таким образом адресует на блоке мультиплексирования битовую передачу. Логические элементы формируют сигнал конца отсчета, который сбрасывает счетчик, фиксирует адрес и обновляет данные в ОЗУ в АЦП (К572ПВ4).

2) Вторая подсистема управления состоит из счетчика и четырех логических элементах. Она формирует сигнал, который можно использовать для синхронизации внешних устройств и сигнала паузы между передаваемыми байтами, который отключает мультиплексор и выходную шину АЦП.

3) Третий подблок управления состоит из регистра, который хранит код адресуемого канала в АЦП, который, в свою очередь, состоит из двух бит и входит в состав передаваемого байта (старшая часть).

АЦП выбирает канал от датчиков, адресуемый сигналами с подключенных выходов регистра, и уже раннее выбранный сигнал преобразует в цифровой код, который поступает на шину и, объединившись с кодом адреса канала, однозначно кодирует измеряемый в текущий момент параметр. Т.о. этот преобразователь служит и для временного хранения данных на протяжении всего времени, пока они не передадутся в ЭВМ. Преобразователь получает со счетчиков также управляющие сигналы (START,

), которые фиксируют адрес на входе, обновляют данные внутри АЦП, отключают выходные шины и синхронизируют работу АЦП.

Далее цифровой код поступает на блок мультиплексоров, один из которых отвечает за формирование стартового и стопового бита, а другой – за последовательность посылки битов на интерфейс с ЭВМ.

4. ОБОСНОВАНИЕ ВЫБОРА ПРИНЦИПИАЛЬНОЙ СХЕМЫ

Выбор принципиальной схемы (см. приложение) обусловлен выбранной функциональной схемой и алгоритмом работы устройства. Ниже, при описании работы устройства, обоснуем выбор некоторых узлов принципиальной схемы.

Принципиальная схема определяет полный состав элементов и связи между ними и дает детальное представление о принципах работы устройства.

Большинство интегральных микросхем выполнено на КМДП-транзисторах. И это не случайно.

В качестве эксплуатационных характеристик КМДП ИС, свойственных только им, следует назвать: работоспособность в широком диапазоне питающих напряжений (3…15 В), высокую помехозащищенность, достигающую 30…45 % от значения питающего напряжения, высокую нагрузочную способность, составляющую до 1000 входов таких же ИС на частотах до нескольких килогерц, высокое входное сопротивление (~1012 Ом), упрощенное сопряжение по слаботочным источникам входного напряжения. Кроме того, имеются и существенные преимущества в технологии КМДП ИС по сравнению с биполярными ИС, к наиболее важным из которых относятся: меньшее (почти в три раза) число технологических операций; самоизоляция от других элементов, расположенных на одной подложке; более высокая степень интеграции (30%) на кристалле.

Исключительно малая потребляемая мощность, открывает для КМДП ИС широкую перспективу применения, в первую очередь в устройствах с автономным питанием: различных бортовых устройствах, в автономных устройствах сбора и обработки данных и т.д., т.е. там, где энергетический фактор оказывается решающим при выборе элементной базы и где по существу им нет альтернативы.

На КМДП-логике у нас построены все логические элементы, счетчики, регистр и мультиплексоры.

Построение систем сбора и цифровой обработки аналоговых сигналов на современных БИС ЦАП, АЦП и микропроцессорных наборах обеспечивает создание функционально полных устройств с точностью, соответствующей 10-12 разрядам, и временем преобразования на канал 1…2 мкс. Причем эти устройства конструктивно всегда размещаются на одной-двух платах. Значительно упростить построение системы сбора может СБИС однокристальной аналогово-цифровой системы типа К572ПВ4. В нашей схеме эта СБИС выполняет мультиплексирование аналогового сигнала и преобразование его в цифровой код.

Задающий генератор выполнен на элементах DD1.1 и DD1.2. Тактовая частота 32767 Гц выбрана из соображений доступности часовых кварцевых резонаторов. Счетчик DD5.1 с элементами DD4.2, DD1.3 образуют делитель тактовой частоты с коэффициентом деления 14. Получающаяся при этом скорость передачи данных — примерно 2341 Бод — отличается от стандартной 2400 Бод менее чем на 3%, что вполне допустимо для асинхронного режима работы. Счетчик DD5.2 формирует последовательность передаваемых 10 бит: стартовый бит, 8 бит данных, 1 стоповый бит без бита паритета.

До начала описания будет полезным упомянуть о технических параметрах примененного в курсовом проекте стандарта RS-232C:

Стандарт RS-232C введен в 1962 году и в настоящее время широко применяется в промышленности. Этот стандарт был разработан для несимметричной передачи данных на короткие расстояния с низкой скоростью.

· Требования стандарта к передатчику:

1) Выход должен выдержать режим холостого хода или короткого замыкания на землю силового или какого либо другого проводника.

2) R при вкл. питании 300 Ом.

3) Uxx мак =+/-25B.

4) Iмак вх кз=500мА.

5) Абсолютное значение сигнала на выходе передатчика на нагрузке от 3000 до 7000 Ом,должна быть более 5В ,но не более 15В.

6) Время наростания и спада сигнала в пределах переходной зоны между +3 и -3В не должно превышать 1мкс.

7) Скорость спада выходного сигнала не должна превышать 30В/мкс.

8) Максимальная скорость передачи данных 20000 бод.

· Требования стандарта к приемнику:

1) Rвх=3000 % 7000 Ом.

2) Шунтирующая Смак между входом приемника и соединительным кабелем должна быть менее 2500 пФ.

3) Uвх хх < 2.0B.

4) Максимальная скорость приема данных 20Кбод.

5) Пределы Uвх +/-25В.

Для того чтобы облегчить соединение оборудования, в котором используется стандарт RS-232, был стандартизирован и 25 контактный соединитель для интерфейса по стандарту RS- 232C (см. таблицу 4.1.)

Таблица 4.1.Обозначение контактов соединителя для стандарта RS-232C.

9-контактный соединитель, номер контакта Обозначение Описание
1 DCD Детектор принимаемого с линии сигнала
2 RxD Принимаемые данные
3 TxD Передаваемые данные
4 DTR Готовность выходных данных
5 GND Сигнальное заземление
6 DSR Готовность приема данных
7 RTS Запрос передачи
8 CIS Сброс передачи
9 RI Индикатор вызова

Рассмотрим процесс передачи байта.

В исходном состоянии (пауза) работа DD8 запрещена высоким уровнем на выходах элемента DD3.2, транзистор VT1 открыт, и в линии связи (вывод 2 ХS1) устанавливается отрицательное напряжение, соответствующее уровню логической “1”.

После сброса DD5.2 на его выходах устанавливаются низкие уровни. Hа базу VT1 через выходы Х0 мультиплексора DD7 и Y0 мультиплексора DD8 подается низкий уровень, VT1 закрывается, и в линии уславливается положительное напряжение — формируется стартовый бит. Далее изменением кода на выходах Q0…Q2 счетчика DD5.2 последовательно переключаются каналы X1...Х7 мультиплексора DD8 — в линию передаются биты данных DB0...DB5 микросхемы DD9 и с выхода “1” регистра DD9.2. По окончании передачи бита “1” регистра DD9.2 выход Q3 счетчика DD5.2 устанавливается в "1", a Q0...Q2 — в "0". На выход через каналы X1 мультиплексора DD7 и Х0 мультиплексора DD8 подается бит “1” регистра DD9.1, который вместе с битом “1” регистра DD9.2 играет роль идентификатора передаваемого байта. По окончании передачи бита “1” регистра DD9.1 счетчик D5.2 сбрасывается и одновременно происходит переключение DD6.1 — на его выходе Q0 устанавливается низкий уровень, а на выходе DD3.2 — высокий, запрещающий работу в DD8 и отключающий выходы в DD9. В линии формируется стоповый бит и его уровень удерживается в течение интервала времени, равного длительности посылки 9*3 бит(3 т.к. 3 стоповых бита). В течении этого времени устанавливается в состояние логического "1" вход ALE АЦП К572ПВ4, что позволяет зафиксировать адрес необходимого канала в регистре К561ИР2 (DD9) и на входах A0,A1 во внутреннем ОЗУ АЦП.