По окончании паузы процесс передачи данных повторятся аналогичным образом для следующего байта. Отличие состоит в том, что для следующего байта будут другие 0-ой и 1-ый биты. За это отвечает регистр DD9, хранящий четыре комбинации ( 0-00, 1-01, 2- 10, 3-11 ). Это позволяет однозначно идентифицировать все четыре канала от датчиков. Таким образом, процесс передачи данных происходит следующим образом:
Пауза0 – пауза1 – пауза2 – передаваемый байт – пауза0 –…
Общая пауза между принятыми байтами (примерно 4 мс) позволяет произвести их сортировку и заполнение массива данных а ОЗУ компьютера, а также обновить их в локальном ОЗУ DD9.
0птрон V01 преобразует уровни КМДП и уровни RS-232 и одновременно осуществляет гальваническую развязку линии связи. Это — простое, но эффективное средство защиты компьютера, поскольку ни обычные мультиплаты IBM PC, ни платы адаптеров интерфейсов ЕС-1841 полной гальванической развязки не имеют. В крайнем случае, можно обойтись без оптрона, изменив схему выходного каскада.
Линия связи питается от отдельного биполярного источника питания +12В, -12В. Поскольку ток, потребляемый линией связи невелик, в качестве источника питания может использоваться, например, преобразователь напряжения на основе блокинг-генератора.
Тип микросхемы | Разрядность | Напряжение питания Uип, В | Ток потребления Iпот, мкА | Потребляемая мощность Рпот, мВт |
К176ИЕ1 | 6 | 9 | 20 | 0.18 |
К561ИЕ8 | 10 | 10 | 20 | 0.2 |
К561ИЕ10 | 4 | 10 | 100 | 1 |
К561ИЕ16 | 14 | 10 | 20 | 0.2 |
К561ИЕ9 | 8 | 10 | 100 | 1 |
В таблице 5.1. приведены основные параметры счетчиков. Микросхема К176ИЕ1 является простейшим шестиразрядным асинхронным двоичным счетчиком импульсов. Она имеет шесть выходов, на которых содержимое счетчика выдается двоичным числом.
Микросхема К561ИЕ8 представляет собой счетчик по модулю 10 с дешифратором. Она выполнена на основе пятикаскадного высокоскоростного счетчика Джонсона и дешифратора, преобразующего двоичный код в сигнал на одном из десяти выводов.
Микросхема К561ИЕ9 является счетчиком по модулю 8 с дешифрацией состояний. Принцип работы ее аналогичен счетчикам ИЕ8, но она содержит 4 триггера в счетчике Джонсона. Следует отметить, что время задержки распространения сигнала от входа до информационных выходов и до выхода переноса у данного типа счетчиков различно. Для К561ИЕ9 при Uип = 5В tзд.р для выходов Q1…Q7 составляет 3150 нс, а для вывода Р—1500 нс. Для микросхемы К564ИЕ9 время задержки нормируется при Uип = 10 В и составляет для выходов Q1…Q7 ---700 нс, а для выхода Р – 360 нс. Основное применение счетчиков типа ИЕ9 и ИЕ8 – различные распределители уровней и импульсов, используемых в качестве формирователей управляющих сигналов либо серий синхроимпульсов.
Микросхема К561ИЕ10 содержит два независимых 4-разрядных двоичных счетчика с параллельным выходом. Для повышения быстродействия в ИС применен параллельный перенос во все разряды. Подача счетных импульсов может производиться либо в положительной полярности, либо в отрицательной полярности на разные входы микросхемы.
Микросхема К561ИЕ16 содержит четырнадцатиразрядный асинхронный счетчик с последовательным переносом. Сброс счетчика в нуль осуществляется импульсом положительной полярности не менее 500 нс по входу R. Максимальная частота выходных импульсов при Uип = 10 В достигает 4 мГц.
Учитывая характеристики, приведенные в таблице, а так же описание микросхем приведенное выше, для выполнения курсового проекта выберем следующие микросхемы счетчика: 2 микросхемы 561ИЕ10.
Кроме счетчиков в курсовом проекте использованы сдвигающие регистры К561ИР2. Выбор их обусловлен простотой внутренней структуры, функционированием и необходимой раздядностью.
С помощью МДП-транзисторов легко получить электронные контакты, в которых цепь сигнала гальванически не связана с источником управляющего воздействия. Ключи и коммутаторы на КМДП-транзисторах обладают двухсторонним действием, т.е. сигналы могут передаваться как от входа к выходу, так и в обратном направлении. Коммутаторы могут иметь много входов и один выход или быть дифференциальными. Коммутаторы на основе КМДП ИС могут использоваться как для цифровых, так и аналоговых сигналов. В цифровых устройствах эти коммутаторы называются цифровыми мультиплексорами (с нескольких входов на один выход) или демультиплексорами (с одного входа на несколько выходов). Ввиду двухстороннего действия КМДП-ключей коммутаторы могут выполнять обе функции. Основные параметры мультиплексоров приведены в таблице 5.2.
Таблица 5.2. Основные параметры мультиплексоров
Тип микро схемы | Разрядность адреса | Напряжение питания Uип , В | Ток потребления Iпот, мА | Потребляемая мощность Рпот , мВт |
К561КП1 | 2 | 10 | 20 | 0.2 |
К651КП2 | 3 | 10 | 100 | 1 |
К561КП3 | 3 | 10 | 40 | 0.4 |
В таблице 5.2. приведены основные параметры мультиплексоров серии 561. Микросхема К561КП1 содержит два четырехканальных коммутатора, которые переключаются синхронно. Внутреннее сопротивление включенного канала при Uип = 5 В находится в пределах 0.5 – 2.5 кОм. Оно существенно снижается при Uип = 15 В и достигает величин 0.13 – 0.28 кОм. Время переключения коммутаторов при поступлении сигнала разрешения составляет 600 нс. При смене адреса канала коммутаторы переключаются за 400 нс. Задержка коммутируемого сигнала через открытый канал не превышает 40 нс. Микросхема К561КП2 содержит один восьмиканальный коммутатор. Отличие микросхем КП2 и КП1 состоит в трехразрядном адресе канала и одном выходе при восьми входах. Время переключения коммутаторов при поступлении сигнала разрешения составляет 400 нс, при смене адреса канала – 320 нс, а задержка сигнала через открытый канал не превышает 30 нс.
Учитывая описание микросхем и характеристики, приведенные в таблице, для курсового проекта можно выбрать две микросхемы К561КП2. Эти микросхемы будем использовать для преобразования параллельного кода в последовательный с одновременной подачей сигналов в последовательный порт. В серии К561 только эта микросхема обладает нужными параметрами (8 входов – 1 выход).
Элементы микросхемы К561ЛН2 (элементы НЕ) используются в основном для организации мультивибраторов. В серии К561 имеется еще одна микросхема, содержащая инверторы, однако в ней много лишнего.
Единственный в схеме транзистор (КТ315Б) выбран также не случайно. Такие транзисторы найдутся на любом производстве, стоят они недорого, но в то же время обладают необходимыми характеристиками.
Несколько дополнительных слов можно сказать о кварцевом резонаторе ZQ1. Он выбран тоже в основном из соображений доступности: кварцевые резонаторы, рассчитанные на частоту 32768 Гц, широко применяются в промышленности при изготовлении электронных часов. Кроме этого, ZQ1 обладает невысокой резонансной частотой (32768 Гц), что позволяет применить делитель на не слишком большое число. При этом мы можем получить частоту, соответствующую скорости передачи 32768/14 = 2341 бод, что отличается от ближайшей скорости передачи COM-порта (115200/48 = 2400 бод) всего лишь на 3%. Такой разброс вполне допустим при асинхронном способе связи.
Микросхема К561КП2
Микросхемы представляют собой восьмиканальный мультиплексор. Содержат 188 интегральных элементов. Назначение выводов: 1 — выход/вход канала Х4; 2 — выход/вход канала Х6; 3 —выход/вход Y; 4 — выход/вход канала Х7; 5 — выход/вход канала Х5; 6—вход запрета D; 7 — напряжение смещения; 8 — общий; 9 — вход управления С; 10— вход управления В; 11—вход управления А; 12 — выход/вход канала ХЗ; 13 — выход/вход канала Х0; 14 — выход/вход канала X1; 15 — выход/вход канала Х2; 16 —напряжение питания.
Таблица 5.3. Таблица истинности микросхемы К561КП2
Логические уровни входных сигналов | Выходной сигнал | |||
C | A3 | A2 | A1 | |
0 | 0 | 0 | 0 | YXO |
0 | 0 | 0 | 1 | YX1 |
0 | 0 | 1 | 0 | YX2 |
0 | 0 | 1 | 1 | YX3 |
0 | 1 | 0 | 0 | YX4 |
0 | 1 | 0 | 1 | YX5 |
0 | 1 | 1 | 0 | YX6 |
0 | 1 | 1 | 1 | YX7 |
1 | X | X | X | Все закрыты |
Микросхема К561ИЕ10
Содержит два независимых 4-разрядных двоичных счетчика с параллельным выходом. Для повышения быстродействия в ИС применен параллельный перенос во все разряды. Подача счетных импульсов может производиться либо в положительной полярности (высоким уровнем) на вход С, либо отрицательной полярности (низким уровнем) на вход V. В первом случае разрешение счета устанавливается высоким уровнем на входе V, а во втором случае – низким уровнем на входе С.