Смекни!
smekni.com

Преобразование случайных сигналов в безынерционных нелинейных и инерционных линейных цепях (стр. 2 из 2)

, 0 k N1

где N1 – число отсчетов корреляционной функции и энергетического спектра (на 1  2 порядка меньше числа отсчетов сигнала N);

Т – интервал дискретизации сигнала.

 = 2Пf =

- шаг отсчета по частоте.

Корреляционная функция Rх(t) и энергетический спектр Wx(f) исходного сигнала изображены на рисунках (см. ниже). Это широкополосный сигнал. Т = 0.0004с; N1 = 10;


По графику корреляции видно что исследуется широкополосный сигнал, его интервал корреляции:

Энергетическая ширина спектра

4. Найдем P(x) для равномерного закона распределения

Xmin = -2,525 Xmax = 0,042

Если во всей области изменения переменной Х связь отклика Y с воздействием Х, обусловленная видом характеристики y = f(x) нелинейного элемента, однозначна, то плотность вероятности распределения мгновенных значений P(y) по известной P(x) можно найти

где

преобразованная зависимость y = f(x).

Если нелинейность такова, что какому-то значению y = y1 отвечает конечное множество значений

,
, … , то

+
+ …

Если линейность такова, что есть значения Y, которым в силу характеристики y = f(x) отвечает бесконечное число значений Х, то применяют следующее правило

[-2,525; 0,042]
[0, 3] P(x) = 0,39

У нас нелинейность вида

Y =


В результате преобразования случайного процесса X(n) в безынерционной нелинейной цепи мы получили новый сигнал Y(n).


Для него m1YN0 = 0,5132 1YN0 = 0,5323 Гистограмма изображена на рисунке, ее огибающая схожа с графиком теоретически построенной функции P(y) следовательно, теоретические расчеты совпадают с практическим преобразованием.

Корреляционная функция Ry(t) и энергетический спектр случайного сигнала Wy(f) представлены на рисунках, приведенных ниже:


Интервал корреляции:

Энергетическая ширина спектра:

В результате преобразования случайного процесса X(n) в безынерционной нелинейной цепи случайный сигнал перестал быть равномерным. Математическое ожидание увеличилось и стало больше нуля. Среднеквадратичное отклонение уменьшилось примерно в 1,5 раза. Сигнал остался широкополосным.

6. В общем случае точно установить взаимосвязь закона распределения воздействия с законом распределения отклика линейной цепи и ее частотной характеристикой очень сложно. Но если протяженность во времени импульсной характеристики цепи такова, что хотя бы в несколько раз превышает к входного случайного процесса, или полоса пропускания цепи в частотной области хотя бы в несколько раз меньше ширины энергетического спектра входного процесса, то при любом законе распределения P(х) входного процесса, случайный процесс на выходе линейной цепи будет иметь распределение, близкое к нормальному.

В результате фильтрации случайного процесса Y(n) в инерционной цепи (ПФ, f0 = 500 Гц, Q = 3) мы получили новый сигнал Z(n).

Для него m1ZN0 = 0,0018 1ZN0 = 0,1679

Определим по гистограмме с помощью критерия 2 произошла ли нормализация случайного процесса Y(n) в результате его фильтрации в линейной цепи


где nk – число отсчетов сигнала, попавший в k – интервал.

- теоретическая вероятность пребывания случайного сигнала в пределах каждого из интервалов X, N - общее число исследуемых отсчетов сигнала Ni = 10

P

=Ф(-1,8)-Ф(-2,21)= - 0,92814+0,97289=0,045

Р

=Ф(-1,38)+Ф(1,8)=-0,83241+0,92814=0,096

Р

=-Ф(0,96)+Ф(1,38)= -0,66294+0,83241=0,1694

Р

=-Ф(0,55)+Ф(0,96)= -0,41768+0,66294=0,24526

Р

=-Ф(0,13)+Ф(0,55)=-0,10348+0,41768=0,3142

Р

=Ф(0,29)+Ф(0,13)=0,22818+0,10348=0,33166

Р

=Ф(0,7)-Ф(0,29)=0,51608-0,22818=0,28789

Р

=Ф(1,12)-Ф(0,7)=0,73729-0,51607=0,22122

Р9=Ф(1,54)-Ф(1,12)=0,87644-0,73729=0,13915

Р10=Ф(1,95)-Ф(1,54)=0,94882-0,87644=0,07

K Pk nk
1 0,045 3 4,9
2 0,0096 5 2,5
3 0,1694 10 0
4 0,24526 18 6,4
5 0,3142 11 0,1
6 0,33166 12 0,4
7 0,28789 13 0,9
8 0,22122 13 0,9
9 0,13915 8 0,4
10 0,07 7 0,9

2 =17,4 Нормализация Р случайного процесса Y(n) в результате его фильтрации в линейной цепи не происходит.

Графики корреляционной функции и энергетического спектра представлены ниже:



Интервал корреляции:

Энергетическая ширина спектра:

В результате фильтрации случайного процесса Y(n) в инерционной линейной цепи случайный сигнал становится близким к нормальному. К этому заключению приходим из того, что полоса пропускания цепи в частотной области почти в 2 раза меньше ширины энергетического спектра входного процесса. Математическое ожидание стало равно 0, 0018, а среднеквадратическое отклонение уменьшилось до 0,1679. Сигнал стал узкополосным – это произошло из-за частотной характеристики К() линейной цепи – ПФ.


Выводы

1. При взятой длине реализации N = 100, 2 является наименьшим из всех рассмотренных N. Математическое ожидание отличается на 9% от заданного, а среднеквадратическое отклонение на 1%

2. По виду корреляционной функции и энергетическому спектру заключаем, что сигнал широкополосный.

3. В результате преобразования случайного процесса X(n) в безинерционной нелинейной цепи, случайный сигнал перестал быть равномерным. Математическое ожидание увеличилось и стало больше 0, среднеквадратичное отклонение уменьшилось примерно в 1,5 раза. Сигнал остался широкополосным, к и fэ остались прежними.

4. В результате фильтрации случайного процесса Y(n) в инерционной цепи нормализация не произошла. Математическое ожидание стало равным 0,0018, а среднеквадратическое отклонение 0,1679. Сигнал стал узкополосным, энергетическая ширина спектра составила

, а

Литература

1) Козлов В.А. Преобразование случайных сигналов в безынерционных нелинейных и инерционных линейных цепях. Казань, КГТУ им. А.Н. Туполева, 2001 г.

2) Гоноровский И.С. Радиотехнические цепи и сигналы. М, Советское радио. 1977 г.