Смекни!
smekni.com

Приемопередающие устройства (стр. 1 из 2)

1. Импульс выходного тока недонапряженного, критического и перенапряженного режима.

Статические характеристики электронного прибора (далее ЭП) позволяют определять ток в цепях любых электродов ЭП при любых произвольных комбинациях напряжений на электродах.

Если же ЭП включен в схему ГВВ, то напряжения на электродах такого ЭП оказываются не произвольными, а функционально и однозначно связанными посредством выходного тока. Другими словами, для входного евх и выходного евых напряжений и выходного тока iвых ЭП, работающего в ГВВ, могут быть написаны cледующие соотношения:

eвых= f1(eвх),

iвых = f2вх, евых).

Подставив первое уравнение во второе, получим iвых = f2вх, f1(eвх )). Послед­нее уравнение можно переписать в одной из следующих двух форм:

iвых = f3(eвх),iвых = f4(eвsх)

Полученные зависимости для выходного тока в виде функций только одной переменной называются динамическими (иногда нагрузочными) характеристиками. В дальнейшем увидим, что динамические характеристики (ДХ) можно построить для тока в цепи любого электрода ЭП, работающего в ГВВ.

Нагрузочными характеристиками генератора называются зависимости его токов, мощностей и электронного КПД от величины сопротивления НС (RHC).


Из графиков следует:

1.При малых Ua(графики 1—3) ДХ анодного тока имеют круто возвышающуюся часть и частично совпадают с осью абсцисс. Импульсы ia имеют почти косинусоидальную форму, импульсы ic— малую амплитуду. Каждый из этих режимов называется недонапряженным (ННР) вследствие того, что мощности, рассеиваемые на управляющей сетке в этих режимах, малы.


2. Графики 4 соответствуют граничному режиму (ГРР). Здесь Несколько изгибается верхняя часть ДХ ia, импульс ia приобретает плоскую

вершину. Амплитуда импульса icстановится заметно больше, при этом вершина его несколько приподнята.

3. Графики 5 относятся к перенапряженному режиму (ПНР). Верхняя часть ДХ ia загнута вниз. Импульс ia имеет провал в средней части. Амплитуда импульса iс резко увеличена.

4. Графики 6 соответствуют сильноперенапряженному режиму. В этом режиме (Ua>Ea) ДХ iа достигает начала координат и имеет участок, совпадающий с осью абсцисс при еа<0, импульс анодного тока раздваивается; амплитуда импульса iс велика, импульс сильно деформирован.
2. Принципиальная схема емкостной трехточки.

В технике связи, и и частности РПДУ, наибольшее распространение получили трехточечные автогенераторы АГ. Они относительно просты в схемотехническом исполнении и позволяют обеспечить высокую стабильность частоты генерации. В простейшем случае такой АГ содержит параллельный колебательный контур, к трем точкам которого присоединен электронный прибор ЭП тремя своими основными электродами.


Длительное время АГ строились как на основе индуктивной, так и емкостной трехточек, поскольку считалось, что ни одна из них не имеет сколько-нибудь заметного преимущества над другой. По мере развития теории АГ постепенно выяснилось, что вторая обладает рядом достоинств перед первой. Во-первых, емкостная трехточка имеет в своем составе П-образный контур. Такая нагрузочная система НС обладает наилучшими фильтрующими способностями, а снижение уровня гармоник, поступающих с выхода на вход АГ, уменьшает фазовый сдвиг φs при прохождении колебаний через ЭП. В итоге емкостная трехточка (при прочих равных условиях) позволяет обеспечить более высокую стабильность генерируемой

частоты, чем индуктивная. Во-вторых, ее НС содержит только одну катушку индуктивности. Известно, что данный реактивный элемент по своим эталонным свойствам уступает конденсатору.

Стремление повысить стабильность частоты АГ заставляет усложнять (модифицировать) классическую емкостную трехточечную схему. Так, Дж. Клапп (США) предложил включить последовательно с катушкой индуктивности, дополнительный конденсатор Скл, (рис. 2.1,а). Тогда общая емкость контура Собщ становится меньше, чем при двух конденсаторах с емкостями С2 и С3 и для сохранения той ж о частоты генерации необходимо увеличить индуктивность контура. Это, в свою очередь, приводит к возрастанию характеристического сопротивления ρ =( L1общ)1/2 При сохранении тех же потерь (r = const) увеличивается эквивалентная добротность Q= ρ /r, что благоприятно отражается на повышении стабильности частоты генерируемых колебаний.

На рис. 2.1,б и в показаны примеры построения АГ на основе схемы Клаппа. В первом- варианте используется БТ, включённый по схеме с общим коллектором. Соединение этого электрода с корпусом удобно по конструктивным соображениям: облегчается проблема охлаждения корпуса транзистора, статор подстроечного конденсатора Скл имеет нулевой РЧ потенциал, что устраняет влияние руки оператора на частоту генерации и др. Делитель из резисторов с сопротивлениями R1и R2совместно с Rэобеспечи­вают требуемый рабочий режим, но постоянному току (мягкое самовозбуждение с переводом в жесткий режим при стационарной амплитуде колебании). Иногда в базовую пень включается резистор Rб, уменьшающий шунтирование НС АГ входным сопротивлением БТ. Назначение элементов с параметрами L1С2 и С3 такое же, как и на эквивалентной схеме (рис. 2.1,а). Питание эмиттера осуществляется через фильтрационно-стабилизирующую цепочку СфRфV2.

В варианте АГизображенном на рис. 2.1,в, в качестве ЭП использован ПТ. Здесь ВЭ соединен с общим проводом только по РЧ потенциалу. При этом упрощается питание УЭ (один резистор Rсмвместо двух) и отпадает необходимость в использовании добавочного резистора Rб. Перестройка АГ осуществляется изменением индуктивности L1.

3. Модуляционные устройства с полным разрядом накопителя.

Рассмотрим одну из наиболее характерных и простых схем модуляторов (рис. 3.1)

В качестве электронного ключа в модуляторах применяют водородный импульсный тиратрон, поскольку накопитель энергии разряжается полностью и напряжение анода на некоторое время становится равным нулю, что обеспечивает погасание тиратрона по окончании действия импульса. Тиратрон обладает малым падением напряжения анода в открытом состоянии: для импульсных водородных тиратронов типа ТГИ

еа min = 150÷200 В. Падение напряжения на тиратроне примерно в 10 раз меньше падения напряжения на вакуумной импульсной модуляторной лампе, следовательно, к. п. д. модулятора с тиратроном выше, а нагрев анода тиратрона меньше. Для удержания тиратрона в запертом состоянии достаточно нулевого напряжения сетки, что в схеме рис. 3 обеспечивается включением резистора Rc. Для отпирания тиратрона достаточно импульса напряжения с крутым фронтом и амплитудой 170—200 В.

Рис. 3.1

В модуляторе на схеме рис. 3.1 запускающий импульс на сетке тиратрона определяет начало действия импульса, который формируется при разряде линии ИЛ через анодную цепь тиратрона и первичную обмотку импульсного трансформатора (ИТ). Трансформатор является необходимым элементом, так как модулятор может работать при условии согласования волнового сопротивления линии с сопротивлением нагрузки Rг = Eаоимп/Iаоимп, большим Zc. Коэффициент трансформации п подбирают так, чтобы пересчитанное в первичную обмотку трансформатора сопротивление нагрузки R'г= Rг/n2= Za. Следует иметь в виду, что коэффициент трансформации трудно сделать больше п = З÷4.

Заряд накопительной линии чаще всего производят от высоковольтного выпрямителя. Широкое распространение имеет резонансный способ заряда накопителя энергии. Напомним, что в конце процесса формирования импульса линия разряжается полностью и на ней (а также на аноде тиратрона) создается нулевое напряжение. Тиратрон гаснет. Процесс заряда в рассматриваемой схеме происходит по известным законам заряда конденсатора через индуктивную катушку от источника постоянного напряжения. Ток заряда iзпроходит от выпрямителя напряжением Ев через зарядный дроссель Др к конденсаторам искусственной линии, которые можно считать включенными параллельно, так как индуктивность ячеек линии мала (L << Lдр ), и далее обратно к источнику, выпрямителю.


Добротность цепи заряда делается достаточно большой: Q>10. По окончании предыдущего импульса и погасания тиратрона напряжение на конденсаторах линии еил начинает нарастать по гармоническому закону

(рис. 3.2, а), соответственно меняется ток заряда i3(рис. 3.2, б). . К моменту времени t1напряжение на конденсаторах достигает величины, равной Ев, а рост тока iзпрекращается. Поскольку ток в контуре, содержащем катушку, не может прекратиться сразу, заряд конденсаторов продолжается за счет энергии, запасенной в дросселе Др, и напряжение на конденсаторах в момент времени t2достигает величины 2ЕВ. В этот момент ток i3= 0. Наличие в цепи заряда диода Д1 не позволяет току iзизменить направление. Этот диод можно не ставить, но тогда для получения напряжения на конденсаторах, равного 2ЕВ, потребовалось бы открывать тиратрон строго в момент времени t2. Следовательно, в радиолокационной системе оказалось бы невозможным изменение частоты следования импульсов (пунктирные линии на рис. 3.2, а, б).