Смекни!
smekni.com

Приёмник радиолокационной станции диапазона 800 МГц (стр. 4 из 7)

3.6.3 Коэффициент устойчивого усиления каскада на биполярном транзисторе, включенном по схеме ОЭ

,

,

что превышает требуемый коэффициент усиления.

3.6.4 Положение рабочей точки из условия обеспечения запаса на регулировку усиления в 6 раз

IЭ0=3мА=3×10-3А,

Y21 0=0,11,IБ0=0,06мА=60мкА,

IК0≈3мА=3×10-3А.

Напряжение база-эмиттер в рабочей точке UБЭ0≈0,7В.

Напряжение коллектор-эмиттер в рабочей точке UКЭ0=5В.

3.6.5 Резистор температурной стабилизации в цепи эмиттера

,

.

Выбираю резистор номиналом 820 Ом.

Напряжение на резисторе:

UЭ=IЭ×RЭ,

UЭ=3×10-3×820=2,46В.

3.6.6 Сопротивления делителя базового смещения

,

,

где IД - ток делителя, IД=6 IБ0=6×0,06×10-3=3,6×10-4А.


,

.

Принимаю значение резистора RД1 номиналом 20кОм по шкале Е24.

3.6.7 Сопротивление делителя базового смещения RД1 распределяю между двумя резисторами, один из которых подстроечный

Сопротивление подстроечного резистора выбираю из соображений обеспечения регулировки тока базы в диапазоне ±35%:

,

.

Принимаю значение резистора RД22 по шкале Е12 номиналом 6,8кОм.

Сопротивление постоянного резистора делителя:

RД21=RД2-0,5×RД22,RД21=8780-0,5×6800=5380Ом.

Принимаю значение резистора RД21 номиналом 5,6кОм.

3.6.8 Входная проводимость усилителя

,


Входное сопротивление усилителя:

,

.

Расчёт коллекторной цепи транзистора будет выполнен после определения параметров нагрузки, которой является ограничитель усиления следующего каскада ЛУПЧ.

3.7 Расчёт ограничителя усиления (смотри рис. %)

3.7.1 Сопротивление резистора делителя RS найду по приближённой формуле из расчёта обеспечения тока через диоды порядка 0,5мА

,

где ЕИ - напряжение источника смещения, в данном случае источника питания;

UПОР - пороговое напряжение диодов, для кремниевых диодов UПОР≈0,7В;

Iдиод - ток через диоды ограничителя, Iдиод=5×10-4А.

3.7.2 Сопротивление нагрузочных сопротивлений делителя

,

.

Принимаю значение R=680Ом по шкале Е24.

3.7.3 Сопротивление нагрузки делителя с учётом входного сопротивления усилителя можно найти по формуле

R~

,

R~

.

3.7.4 Сопротивление резистора ограничителя Rf

Rf=R~×(KЛ-1),

Rf=260×(6,81-1) =1511Ом.

Выбираю номинал резистора Rf по шкале Е24 1,5кОм.

3.7.5 В процессе настройки ЛУПЧ напряжение ограничения усиления подвергается изменению

Разделяю сопротивление RS на два резистора, один из которых подстроечный. Он должен обеспечить регулировку напряжения ограничения в пределах ±20%.


Сопротивление подстроечного резистора:

RS2=0,4×RS,

RS2=0,4×25400=10160Ом.

Выбираю номинал подстроечного резистора по шкале Е12 величиной 10кОм.

Сопротивление постоянного резистора:

RS1=RS-0,5 RS1,RS1=25400-0,5 10000=20400Ом.

Выбираю номинал резистора по шкале Е24 величиной 20кОм.

3.7.6 Входное сопротивление ограничителя в режиме усиления

,

.

Входное сопротивление ограничителя в режиме насыщения:

,

.

Среднее значение входного сопротивления ограничителя можно найти как среднее геометрическое двух значений сопротивлений:

,

.

3.8 Расчёт коллекторной цепи усилителя ЛУПЧ

3.8.1 Сопротивление коллекторной цепи по переменному току с учётом влияния входного сопротивления ограничителя усиления

,

.

3.8.2 Сопротивление резистора коллекторной нагрузки по переменному току

,

Принимаю значение Rк по шкале Е24 равным 75Ом.

3.8.3 Сопротивление резистора фильтра

,

.

Принимаю значение Rф по шкале Е24 равным 1,5кОм.

3.8.4 Ёмкость конденсатора в цепи эмиттера находится из соображения его малого реактивного сопротивления по сравнению с сопротивлением резистора цепи эмиттера

XCЭ<<RЭ,

или

,

.

Выбираю конденсатор по шкале Е24 номиналом 130пФ.

3.8.5 Ёмкость разделительных конденсаторов СР1 и СР2 найду из соображения малого падения напряжения на них

Реактивное сопротивление конденсатора должно быть много меньше входного сопротивления следующего каскада. Ёмкость конденсаторов можно найти по формуле:

,

,

,

Выбираю по шкале Е24 конденсатор СР1 номинальной ёмкостью 620пФ.

3.8.6 Ёмкость конденсатора фильтра можно найти по приближённой формуле

,

.

Принимаю величину ёмкости Cф по шкале Е24 номиналом 1500пФ.

4. Расчёт смесителя

4.1 Параметры полевого транзистора в режиме преобразования частоты

Входная проводимость:

g11ПР≈0,6×g11С,

где g11С - входная проводимость в режиме усиления на частоте сигнала,

g11ПР≈0,6×2,84×10-3=1,7×10-3См;

крутизна преобразования:

Y21ПР=0,25×Y21П,

Y21ПР=0,25×3,33×10-3=8,33×10-4См;

выходная проводимость:

g22ПР≈0,4×g22,g22ПР≈0,4×1×10-4=4×10-5См;

проводимость обратной связи:

Y12ПР≈0,15×Y12П,

где Y12П - проводимость обратной связи на промежуточной частоте,

Y12ПР≈0,15×(-5,65×10-5) =8,5×10-6См;

ёмкости затвор-исток, затвор-сток и сток-исток и выходная ёмкость остаются без изменений:

СЗ-И=1,5пФ,

СЗ-С=0,3пФ,

СС-И=1,1пФ,

С22И=1,4пФ.

4.2 Найду устойчивый коэффициент усиления смесителя

,

.

4.3 Положение рабочего участка смесителя выбираю на линейном участке зависимости крутизны транзистора от напряжения затвор-исток

Напряжение затвор-исток в середине рабочего участка смесителя:

UЗ-И 0=3В,


ток стока в рабочей точке смесителя:

IC 0=10мА.

Ширина рабочего участка:

2ΔUЗ-И=6В,

амплитуда гетеродина:

UГЕТm=0,5×2ΔUЗ-И,

UГЕТm=0,5×6=3В.

Действующее значение напряжения гетеродина:

,

.

4.4 Расчёт избирательной системы цепи стока

4.4.1 Коэффициент, учитывающий нестабильность формы частотной характеристики из-за влияния входных и выходных ёмкостей усилительного прибора

,

где b- относительное изменение ёмкости, которое может быть равным 0,1…0,3;

μ - коэффициент, учитывающий степень подверженности частотной характеристики фильтров влиянию вносимых ёмкостей, для схемы на двухконтурных фильтрах μ=0,8…1,0.