Смекни!
smekni.com

Приёмник радиолокационной станции диапазона 800 МГц (стр. 5 из 7)

4.4.2 Определяю критические значения затухания контура

,

,

где dK- конструктивное затухание контура, для частоты 30МГц dK=0,01,C11 - входная ёмкость каскада следующая за смесителем, C11=2пФ,

C22 -выходная ёмкость полевого транзистора, C22=1,4пФ,

g11 - входная проводимость каскада следующая за смесителем, g11=2,25×10-3,g22ПР - выходная проводимость полевого транзистора при преобразовании.

,

.

4.4.3 Сравниваю полученное ранее при предварительном расчёте эквивалентное затухание контуров dЭК с найденными значениями критического затухания

dЭК=0,01257,d'=0,047,d"=0,392.

Очевидно, что dЭК<d' - режим максимального усиления обеспечивается без ограничений.

4.4.4 Коэффициент включения в базовую цепь следующего транзистора

,

.

Коэффициент включения контура в коллекторную цепь принимают равным единице (полное включение контура в цепь коллектора):

m1=1.

4.4.5 Эквивалентная ёмкость первого и второго контура

,

.

4.4.6 Резонансный коэффициент усиления отдельного каскада

,

.

Коэффициент усиления не превышает значения устойчивого усиления:

K01<KУСТ.

4.4.7 Ёмкость первого контура

,

.

Принимаю ёмкость первого контура СК1 равной 160пФ по шкале Е24.

4.4.8 Ёмкость второго контура СК21

,

.

Принимаю ёмкость второго контура СК21 равной 180пФ по шкале Е24.

4.4.9 Ёмкость второго контура СК22

,

.

Принимаю ёмкость второго контура СК22 равной 1200пФ по шкале Е24.

4.4.10 Индуктивности контуров

,

где СК=СК2=СК2=160пФ.

.

4.4.11 Коэффициент связи между контурами при критической связи

k=dЭК,

k=0,01257.

4.4.12 Ёмкость конденсатора внешнеемкостной связи

ССВ=k×СК,

ССВ=0,01257×160=2,01пФ.

Принимаю номинал ёмкости конденсатора связи по шкале Е24 равным 2пФ.

4.5 Найду требования к колебанию гетеродина

4.5.1 Нагрузкой транзистора является колебательный контур. Резонансная проводимость контура

,

.

4.5.2 Колебания гетеродина подаются в цепь истока транзистора, следовательно, со стороны гетеродина транзистор включен по схеме с общим затвором (ОЗ)

Входная проводимость усилительного каскада с ОЗ:

,

где g11C- входная проводимость по схеме ОИ на частоте сигнала,

g22C. - выходная проводимость транзистора в схеме с ОИ.


.

4.5.3 Мощность колебаний гетеродина

,

.

4.6 Расчёт смесителя по постоянному току

4.6.1 Резистор температурной стабилизации в цепи истока

,

где IИ0 - ток истока в рабочей точке, IИ0≈IC0+UЗ-И×g11C=10×10-3+3×2,84×10-3=1,85×10-2А=18,5мА.

Сопротивление RИ принимаю номиналом 68Ом по шкале Е24.

Напряжение на резисторе RИ:

UИ=IИ0×RИ,

UИ=1,85×10-2×68=1,26В.

4.6.2 Сопротивления делителя смещения затвора

,

где IД - ток делителя, из соображений стабильности положения рабочей точки ток делителя выбирается много больше тока утечки затвора полевого транзистора. Для данного типа транзистора ток утечки затвора не превышает 4нА, однако для избежания проблем с выбором резисторов делителя со слишком большими номиналами, а также уменьшения влияния паразитных утечек тока, ток делителя можно принять равным 100мкА.

,

.

Сопротивления резисторов RД1 и RД2 выбираю равными 36кОм и 43кОм соответственно.

4.6.3 Сопротивление резистора фильтра

,

.

Принимаю значение сопротивления резистора фильтра 150Ом по шкале Е24.

4.6.4 Ёмкость конденсатора фильтра можно найти по приближённой формуле

,

.

Принимаю номинал конденсатора фильтра по шкале Е24 равным 43пФ.

4.6.5 Ёмкость конденсатора в цепи истока находится из соображения его малого реактивного сопротивления по сравнению с сопротивлением резистора цепи истока

XCИ<<RИ,

Или

,

.

Выбираю конденсатор по шкале Е24 номиналом 1800пФ.

5. Расчёт полосового фильтра СВЧ

Фильтр СВЧ выполняю на связанных разомкнутых полосковых линиях. Полосковые линии выполняются в виде рисунка печатной платы. Материалом подложки послужит стеклотекстолит, а проводниками полосок медная фольга. Выбираю в качестве материала печатной платы фольгированный с двух сторон стеклотекстолит матки СФ2-35-2,0 ГОСТ 10316-70. Его параметры:

толщина подложки d=2мм;

относительная диэлектрическая проницаемость материала подложки ε=6;

толщина фольги Δ=35мкм,

тангенс угла диэлектрических потерь tgδ=250×10-5, на частоте 1ГГц.

5.1 Для фильтра с максимально плоской характеристикой число звеньев можно найти по формуле [Воскресенский]

,

где LЗ - ослабление при расстройке ΔfЗ,

LПРОП - ослабление на границе полосы пропускания при расстройке ΔfПРОП, обычно LПРОП=2 (или 3дБ).

Число звеньев фильтра округляется до ближайшего большего целого:


n=2.

Замечу, что число элементарных фильтров на связанных полосках на единицу больше, то есть три.

5.2 Найду отношение

.

Затем, по таблице 3.4 [Ковалёв], для относительной полосы пропускания 2% найду коэффициенты qi, представляющие собой перепады характеристических сопротивлений ступенчатого перехода фильтра-прототипа:

q1=q3=83,356,q2=3741,2.

5.3 Величина переходных затуханий связанных звеньев

Ci=10×lg(1+qi),

C1=C3=10×lg(1+83,356) =19,26дБ,

C2=10×lg(1+3741,2) =35,73дБ.

5.4 Амплитудный коэффициент связи имеет простую связь с величиной переходного затухания

Ci=10×lgki-2.


Откуда коэффициент связи:

,

,

.

5.5 Геометрические размеры полосок определяю по формулам [Ковалёв]

,

.

Для уменьшения громоздкости вычислений результаты расчётов приведены в таблице 3.1 для d=2мм, ε=6 и ρ=75Ом.


Таблица 3.1

b1=b3, мм s1=s3, мм b2, мм s2, мм
1,06 2,22 1,15 4,64

5.6 Длина полосок

,

где λ - длина волны колебаний в воздухе,

СКрi- краевая ёмкость резонатора.:

Краевая ёмкость резонатора определяется по формуле:

,

где Δ - толщина проводника резонатора, Δ=0,035мм.

Результаты расчётов приведены в таблице 3.2